Open Access. Powered by Scholars. Published by Universities.®

Medical Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Himmelfarb Health Sciences Library, The George Washington University

Neurons--metabolism

Articles 1 - 2 of 2

Full-Text Articles in Medical Physiology

Visualization Of Oxytocin Release That Mediates Paired Pulse Facilitation In Hypothalamic Pathways To Brainstem Autonomic Neurons, Ramon A. Pinol, Heather Jameson, Anastas Popratiloff, Norman H. Lee, David Mendelowitz Nov 2014

Visualization Of Oxytocin Release That Mediates Paired Pulse Facilitation In Hypothalamic Pathways To Brainstem Autonomic Neurons, Ramon A. Pinol, Heather Jameson, Anastas Popratiloff, Norman H. Lee, David Mendelowitz

Pharmacology and Physiology Faculty Publications

Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN) contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work …


Cc2d1a Regulates Human Intellectual And Social Function As Well As Nf-Κb Signaling Homeostasis., M. Chiara Manzini, Lan Xiong, Ranad Shaheen, Dimira E Tambunan, Stefania Di Costanzo, Vanessa Mitisalis, +15 Additional Authors Aug 2014

Cc2d1a Regulates Human Intellectual And Social Function As Well As Nf-Κb Signaling Homeostasis., M. Chiara Manzini, Lan Xiong, Ranad Shaheen, Dimira E Tambunan, Stefania Di Costanzo, Vanessa Mitisalis, +15 Additional Authors

Pharmacology and Physiology Faculty Publications

Autism spectrum disorder (ASD) and intellectual disability (ID) are often comorbid, but the extent to which they share common genetic causes remains controversial. Here, we present two autosomal-recessive "founder" mutations in the CC2D1A gene causing fully penetrant cognitive phenotypes, including mild-to-severe ID, ASD, as well as seizures, suggesting shared developmental mechanisms. CC2D1A regulates multiple intracellular signaling pathways, and we found its strongest effect to be on the transcription factor nuclear factor κB (NF-κB). Cc2d1a gain and loss of function both increase activation of NF-κB, revealing a critical role of Cc2d1a in homeostatic control of intracellular signaling. Cc2d1a knockdown in neurons …