Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Medical Sciences

Therapies For Mitochondrial Disorders, Kayli Sousa Smyth, Anne Mulvihill Dec 2022

Therapies For Mitochondrial Disorders, Kayli Sousa Smyth, Anne Mulvihill

SURE Journal: Science Undergraduate Research Experience Journal

Mitochondria are cytoplasmic, double-membrane organelles that synthesise adenosine triphosphate (ATP). Mitochondria contain their own genome, mitochondrial DNA (mtDNA), which is maternally inherited from the oocyte. Mitochondrial proteins are encoded by either nuclear DNA (nDNA) or mtDNA, and both code for proteins forming the mitochondrial oxidative phosphorylation (OXPHOS) complexes of the respiratory chain. These complexes form a chain that allows the passage of electrons down the electron transport chain (ETC) through a proton motive force, creating ATP from adenosine diphosphate (ADP). This study aims to explore current and prospective therapies for mitochondrial disorders (MTDS). MTDS are clinical syndromes coupled with abnormalities …


Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich May 2021

Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich

Student Theses and Dissertations

Although non-essential, glycine plays an important role in major metabolic reactions and is most known for its anti-inflammatory effects. An accumulation of contemporary research has shown that glycine is able to stabilize membrane potential using glycine receptors at the cellular level and to protect mitochondrial function directly, whether it is from inflammation, heavy metal poisoning, or ischemia-induced neuroinflammation. In this research, the existence of a hypothetical mitochondrial glycine receptor is examined. Immunofluorescence imaging was used to examine the presence of the glycine receptor subunits alpha 1 and alpha 2 in both non- differentiated and differentiated neuroblastoma cell lines. The preliminary …


Mitochondrial Metabolism In Astrocytes Regulates Brain Bioenergetics, Neurotransmission And Redox Balance, Jordan Rose, Christian Brian, Aglaia Pappa, Mihalis I. Panayiotidi, Rodrigo Franco Jan 2020

Mitochondrial Metabolism In Astrocytes Regulates Brain Bioenergetics, Neurotransmission And Redox Balance, Jordan Rose, Christian Brian, Aglaia Pappa, Mihalis I. Panayiotidi, Rodrigo Franco

School of Veterinary and Biomedical Sciences: Faculty Publications

In the brain, mitochondrial metabolism has been largely associated with energy production, and its dysfunction is linked to neuronal cell loss. However, the functional role of mitochondria in glial cells has been poorly studied. Recent reports have demonstrated unequivocally that astrocytes do not require mitochondria to meet their bioenergetics demands. Then, the question remaining is, what is the functional role of mitochondria in astrocytes? In this work, we review current evidence demonstrating that mitochondrial central carbon metabolism in astrocytes regulates overall brain bioenergetics, neurotransmitter homeostasis and redox balance. Emphasis is placed in detailing carbon source utilization (glucose and fatty acids), …


Student-Faculty Collaborative Research Grant Report, Megan Bestwick Feb 2019

Student-Faculty Collaborative Research Grant Report, Megan Bestwick

Post-Grant Reports

Mitochondria are essential organelles in most eukaryotic cells because of their role in metabolism and the production of ATP by the oxidative phosphorylation (OXPHOS) pathway, as well as other key cellular processes. Metal cofactors, such as copper (Cu) and iron (Fe), are incorporated into OXPHOS protein complexes of yeast located within the inner membrane of the mitochondria. Misincorporation or modulation of these available metals in mitochondrial enzymes leads to the production of reactive oxygen species (ROS). ROS are reactive molecules containing oxygen such as peroxides, superoxide, and hydroxyl radicals. Yeast are a good model for studying aging and the effect …


Mitochondrial Metabolism In Major Neurological Diseases, Zhengqiu Zhou, Grant L. Austin, Lyndsay E. A. Young, Lance A. Johnson, Ramon Sun Nov 2018

Mitochondrial Metabolism In Major Neurological Diseases, Zhengqiu Zhou, Grant L. Austin, Lyndsay E. A. Young, Lance A. Johnson, Ramon Sun

Molecular and Cellular Biochemistry Faculty Publications

Mitochondria are bilayer sub-cellular organelles that are an integral part of normal cellular physiology. They are responsible for producing the majority of a cell’s ATP, thus supplying energy for a variety of key cellular processes, especially in the brain. Although energy production is a key aspect of mitochondrial metabolism, its role extends far beyond energy production to cell signaling and epigenetic regulation–functions that contribute to cellular proliferation, differentiation, apoptosis, migration, and autophagy. Recent research on neurological disorders suggest a major metabolic component in disease pathophysiology, and mitochondria have been shown to be in the center of metabolic dysregulation and possibly …


Acetic Acid Induces Sch9p-Dependent Translocation Of Isc1p From The Endoplasmic Reticulum Into Mitochondria, António Rego, Katrina F Cooper, Justin Snider, Yusuf A Hannun, Vítor Costa, Manuela Côrte-Real, Susana R Chaves Jun 2018

Acetic Acid Induces Sch9p-Dependent Translocation Of Isc1p From The Endoplasmic Reticulum Into Mitochondria, António Rego, Katrina F Cooper, Justin Snider, Yusuf A Hannun, Vítor Costa, Manuela Côrte-Real, Susana R Chaves

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Changes in sphingolipid metabolism have been linked to modulation of cell fate in both yeast and mammalian cells. We previously assessed the role of sphingolipids in cell death regulation using a well characterized yeast model of acetic acid-induced regulated cell death, finding that Isc1p, inositol phosphosphingolipid phospholipase C, plays a pro-death role in this process. Indeed, isc1∆ mutants exhibited a higher resistance to acetic acid associated with reduced mitochondrial alterations. Here, we show that Isc1p is regulated by Sch9p under acetic acid stress, since both single and double mutants lacking Isc1p or/and Sch9p have the same resistant phenotype, and SCH9 …


Enhancement Of Reactive Oxygen Species Production And Chlamydial Infection By The Mitochondrial Nod-Like Family Member Nlrx1, Ali A. Abdul-Sater, Najwene Saïd-Sadier, Verissa M. Lam, Bhavni Singh, Matthew A. Pettengill, Fraser Soares, Ivan Tattoli, Simone Lipinski, Stephen E. Girardin, Philip Rosenstiel, David M. Ojcius Apr 2017

Enhancement Of Reactive Oxygen Species Production And Chlamydial Infection By The Mitochondrial Nod-Like Family Member Nlrx1, Ali A. Abdul-Sater, Najwene Saïd-Sadier, Verissa M. Lam, Bhavni Singh, Matthew A. Pettengill, Fraser Soares, Ivan Tattoli, Simone Lipinski, Stephen E. Girardin, Philip Rosenstiel, David M. Ojcius

David M. Ojcius

Chlamydia trachomatis infections cause severe and irreversible damage that can lead to infertility and blindness in both males and females. Following infection of epithelial cells, Chlamydia induces production of reactive oxygen species (ROS). Unconventionally, Chlamydiae use ROS to their advantage by activating caspase-1, which contributes to chlamydial growth. NLRX1, a member of the Nod-like receptor family that translocates to the mitochondria, can augment ROS production from the mitochondria following Shigella flexneri infections. However, in general, ROS can also be produced by membrane-bound NADPH oxidases. Given the importance of ROS-induced caspase-1 activation in growth of the chlamydial vacuole, we investigated the …


Glutaredoxin-2 Is Required To Control Oxidative Phosphorylation In Cardiac Muscle By Mediating Deglutathionylation Reactions, Mary-Ellen Harper, Ryan J. Mailloux, Jian Ying Xuan, Skye Mcbride, Wael Maharsy, Stephanie Thorn, Chet E. Holterman, Christopher R.J. Kennedy, Peter Rippstein, Robert Dekemp, Jean Da Silva, Mona Nemer, Marjorie Lou Jan 2014

Glutaredoxin-2 Is Required To Control Oxidative Phosphorylation In Cardiac Muscle By Mediating Deglutathionylation Reactions, Mary-Ellen Harper, Ryan J. Mailloux, Jian Ying Xuan, Skye Mcbride, Wael Maharsy, Stephanie Thorn, Chet E. Holterman, Christopher R.J. Kennedy, Peter Rippstein, Robert Dekemp, Jean Da Silva, Mona Nemer, Marjorie Lou

School of Veterinary and Biomedical Sciences: Faculty Publications

Glutaredoxin-2 (Grx2) modulates the activity of several mitochondrial proteins in cardiac tissue by catalyzing deglutathionylation reactions. However, it remains uncertain whether Grx2 is required to control mitochondrial ATP output in heart. Here, we report that Grx2 plays a vital role modulating mitochondrial energetics and heart physiology by mediating the deglutathionylation of mitochondrial proteins. Deletion of Grx2 (Grx2−/−) decreased ATP production by complex I-linked substrates to half that in wild type (WT) mitochondria. Decreased respiration was associated with increased complex I glutathionylation diminishing its activity. Tissue glucose uptake was concomitantly increased. Mitochondrial ATP output and complex I activity could be recovered …


Mitochondrial Structure And Function As A Therapeutic Target In Malignant Mesothelioma, Brian Cunniff Jan 2014

Mitochondrial Structure And Function As A Therapeutic Target In Malignant Mesothelioma, Brian Cunniff

Graduate College Dissertations and Theses

Malignant mesothelioma (MM) is a rare tumor associated with occupational exposure to asbestos with no effective treatment regime. Evaluation of mitochondrial function in human MM cell lines revealed a common tumor phenotype: in comparison to immortalized or primary human mesothelial cells, MM tumor cells displayed a more oxidized mitochondrial environment, increased expression of mitochondrial antioxidant enzymes, and altered mitochondrial metabolism. Earlier work by our laboratory indicated that increases in mitochondrial reactive oxygen species (mROS) in MM cell lines supports expression of FOXM1, an oncogenic transcription factor that contributes to increased cell proliferation and chemoresistance. These studies sought to investigate targeting …


Modulation Of Bax/Bak Dependent Apoptosis By Sirtuin 3 And Mitochondrial Permeability Transition By Sirtuin 4, Manish Verma Aug 2013

Modulation Of Bax/Bak Dependent Apoptosis By Sirtuin 3 And Mitochondrial Permeability Transition By Sirtuin 4, Manish Verma

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondria are dynamic organelles that regulate a myriad of cellular functions, including energy production and metabolic regulation. Mitochondria are also a critical regulator of cell death signaling cascades modulating both apoptotic and necrotic cell death. However, what determines which cell death pathway is activated is still unclear. The mitochondrial/intrinsic pathway of apoptosis is dependent on the activation of pro-apoptotic proteins, Bax and Bak, which induce mitochondrial outer membrane permeabilization (MOMP). Once the integrity of outer mitochondrial membrane (OMM) is compromised, pro-apoptotic intermembrane space proteins like cytochrome c, Smac/Diablo, Omi/HtrA2 and AIF are released into the cytoplasm, which activates the post-mitochondrial …


Enhancement Of Reactive Oxygen Species Production And Chlamydial Infection By The Mitochondrial Nod-Like Family Member Nlrx1, Ali A. Abdul-Sater, Najwene Saïd-Sadier, Verissa M. Lam, Bhavni Singh, Matthew A. Pettengill, Fraser Soares, Ivan Tattoli, Simone Lipinski, Stephen E. Girardin, Philip Rosenstiel, David M. Ojcius Dec 2010

Enhancement Of Reactive Oxygen Species Production And Chlamydial Infection By The Mitochondrial Nod-Like Family Member Nlrx1, Ali A. Abdul-Sater, Najwene Saïd-Sadier, Verissa M. Lam, Bhavni Singh, Matthew A. Pettengill, Fraser Soares, Ivan Tattoli, Simone Lipinski, Stephen E. Girardin, Philip Rosenstiel, David M. Ojcius

All Dugoni School of Dentistry Faculty Articles

Chlamydia trachomatis infections cause severe and irreversible damage that can lead to infertility and blindness in both males and females. Following infection of epithelial cells, Chlamydia induces production of reactive oxygen species (ROS). Unconventionally, Chlamydiae use ROS to their advantage by activating caspase-1, which contributes to chlamydial growth. NLRX1, a member of the Nod-like receptor family that translocates to the mitochondria, can augment ROS production from the mitochondria following Shigella flexneri infections. However, in general, ROS can also be produced by membrane-bound NADPH oxidases. Given the importance of ROS-induced caspase-1 activation in growth of the chlamydial vacuole, we investigated the …


Explorations In Homeoviscous Adaptation And Mass Spectral Analysis Of Membrane Lipids, Michael Douglas Timmons Jan 2010

Explorations In Homeoviscous Adaptation And Mass Spectral Analysis Of Membrane Lipids, Michael Douglas Timmons

University of Kentucky Doctoral Dissertations

The focus of this dissertation is centered on the mass spectral analysis of lipids and changes occurring in keeping with the concept of homeoviscous adaptation [1]. Homeoviscous adaptation is the process of modification of membrane lipids in response to environmental stimuli [1]. Dissertation investigations applied this concept to prokaryotic and eukaryotic organisms, and expanded the perception of environmental factors from exogenous organic solvents to intracellular environment.

The field of lipidomics deals with the analysis of phospholipid and fatty acid components of membranes the changes that occur due to environmental stimuli and their biological significance [2-6]. The high sensitivity of mass …


Substrate And Regulation Of Mitochondrial Μ-Calpain, Aashish Joshi Jan 2009

Substrate And Regulation Of Mitochondrial Μ-Calpain, Aashish Joshi

University of Kentucky Doctoral Dissertations

μ -Calpain is localized to the mitochondrial intermembrane space. Apoptosisinducing factor (AIF), which executes caspase-independent cell death, is also localized to the mitochondrial intermembrane space. Following processing at the N-terminus, AIF becomes truncated (tAIF) and is released from mitochondria. The protease responsible for AIF processing has not been established. The same submitochondrial localization of mitochondrial μ-calpain and AIF gives support to the hypothesis that mitochondrial μ-calpain may be responsible for processing AIF. Atractyloside-induced tAIF release in rat liver mitochondria was inhibited by cysteine protease inhibitor MDL28170, but not by calpain inhibitors PD150606 or calpastatin. Moreover, μ-calpain immunoreactivity was difficult to …


Identification Of Fatty Acid Oxidation Disorder Patients With Lowered Acyl-Coa Thioesterase Activity In Human Skin Fibroblasts, Mary Hunt, Jos Ruiter, Petra Mooyer, Carlo W T Van Roermond, Rob Ofman, Lodewig Ijlst, Ronald J A Wanders Jan 2005

Identification Of Fatty Acid Oxidation Disorder Patients With Lowered Acyl-Coa Thioesterase Activity In Human Skin Fibroblasts, Mary Hunt, Jos Ruiter, Petra Mooyer, Carlo W T Van Roermond, Rob Ofman, Lodewig Ijlst, Ronald J A Wanders

Articles

Background: Acyl-CoA thioesterases are enzymes that hydrolyze acyl-CoAs to the free fatty acid and coenzyme A (CoASH). These enzymes have been identified in several cellular compartments and are thought to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. However, to date no patients deficient in acyl-CoA thioesterases have been identified. Design: Acyl-CoA thioesterase activity was measured in human skin fibroblasts. Western blot analysis was used to determine Type-II acyl-CoA thioesterase protein levels in patients. Results: Activity was found in human fibroblasts with all saturated acyl-CoAs from C4:0- to C18:0-CoA, with highest activity detected with lauroyl-CoA and myristoyl-CoA (C12:0 …