Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Sciences

Dna-Pkcs-Mediated Transcriptional Regulation Drives Prostate Cancer Progression And Metastasis., Jonathan F Goodwin, Vishal Kothari, Justin M Drake, Shuang Zhao, Emanuela Dylgjeri, Jeffry L. Dean, Matthew J. Schiewer, Christopher Mcnair, Jennifer K. Jones, Alvaro Aytes, Michael S. Magee, Adam E. Snook, Ziqi Zhu, Robert Den, Ruth C. Birbe, Leonard G. Gomella, Nicholas A. Graham, Ajay A. Vashisht, James A. Wohlschlegel, Thomas G. Graeber, R. Jeffrey Karnes, Mandeep Takhar, Elai Davicioni, Scott A. Tomlins, Cory Abate-Shen, Nima Sharifi, Owen N. Witte, Felix Y. Feng, Karen E. Knudsen Jul 2015

Dna-Pkcs-Mediated Transcriptional Regulation Drives Prostate Cancer Progression And Metastasis., Jonathan F Goodwin, Vishal Kothari, Justin M Drake, Shuang Zhao, Emanuela Dylgjeri, Jeffry L. Dean, Matthew J. Schiewer, Christopher Mcnair, Jennifer K. Jones, Alvaro Aytes, Michael S. Magee, Adam E. Snook, Ziqi Zhu, Robert Den, Ruth C. Birbe, Leonard G. Gomella, Nicholas A. Graham, Ajay A. Vashisht, James A. Wohlschlegel, Thomas G. Graeber, R. Jeffrey Karnes, Mandeep Takhar, Elai Davicioni, Scott A. Tomlins, Cory Abate-Shen, Nima Sharifi, Owen N. Witte, Felix Y. Feng, Karen E. Knudsen

Department of Cancer Biology Faculty Papers

Emerging evidence demonstrates that the DNA repair kinase DNA-PKcs exerts divergent roles in transcriptional regulation of unsolved consequence. Here, in vitro and in vivo interrogation demonstrate that DNA-PKcs functions as a selective modulator of transcriptional networks that induce cell migration, invasion, and metastasis. Accordingly, suppression of DNA-PKcs inhibits tumor metastases. Clinical assessment revealed that DNA-PKcs is significantly elevated in advanced disease and independently predicts for metastases, recurrence, and reduced overall survival. Further investigation demonstrated that DNA-PKcs in advanced tumors is highly activated, independent of DNA damage indicators. Combined, these findings reveal unexpected DNA-PKcs functions, identify DNA-PKcs as a potent driver …


Disrupting Sumoylation Enhances Transcriptional Function And Ameliorates Polyglutamine Androgen Receptor-Mediated Disease., Jason P Chua, Satya L Reddy, Zhigang Yu, Elisa Giorgetti, Heather L Montie, Sarmistha Mukherjee, Jake Higgins, Richard C Mceachin, Diane M Robins, Diane E Merry, Jorge A Iñiguez-Lluhí, Andrew P Lieberman Feb 2015

Disrupting Sumoylation Enhances Transcriptional Function And Ameliorates Polyglutamine Androgen Receptor-Mediated Disease., Jason P Chua, Satya L Reddy, Zhigang Yu, Elisa Giorgetti, Heather L Montie, Sarmistha Mukherjee, Jake Higgins, Richard C Mceachin, Diane M Robins, Diane E Merry, Jorge A Iñiguez-Lluhí, Andrew P Lieberman

Department of Biochemistry and Molecular Biology Faculty Papers

Expansion of the polyglutamine (polyQ) tract within the androgen receptor (AR) causes neuromuscular degeneration in individuals with spinobulbar muscular atrophy (SBMA). PolyQ AR has diminished transcriptional function and exhibits ligand-dependent proteotoxicity, features that have both been implicated in SBMA; however, the extent to which altered AR transcriptional function contributes to pathogenesis remains controversial. Here, we sought to dissociate effects of diminished AR function from polyQ-mediated proteotoxicity by enhancing the transcriptional activity of polyQ AR. To accomplish this, we bypassed the inhibitory effect of AR SUMOylation (where SUMO indicates small ubiquitin-like modifier) by mutating conserved lysines in the polyQ AR that …