Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Sciences

The Effects Of Synthetic And Dietary Therapeutics On Learning, Memory, Motor Coordination, And Seizure In An Angelman Syndrome Mouse Model, Stephanie Lynn Ciarlone Nov 2016

The Effects Of Synthetic And Dietary Therapeutics On Learning, Memory, Motor Coordination, And Seizure In An Angelman Syndrome Mouse Model, Stephanie Lynn Ciarlone

USF Tampa Graduate Theses and Dissertations

Angelman syndrome (AS) is a rare genetic and neurological disorder presenting with severe developmental delay, ataxia, epilepsy, and lack of speech. AS is associated with a neuron-specific loss of function of the maternal UBE3A allele, a gene encoding an E3 ubiquitin ligase. Currently, no cure exists for this disorder; however, recent research using an AS mouse model suggests that pharmacological intervention is plausible, and can alleviate some of the detrimental phenotypes reported in AS patients.

Although there is no curative treatment for AS, seizure medication and behavioral therapies are most commonly prescribed in order to minimize symptoms. However, these options …


Strategies For Preventing Age And Neurodegenerative Disease-Associated Mitochondrial Dysfunction, Vedad Delic Jan 2015

Strategies For Preventing Age And Neurodegenerative Disease-Associated Mitochondrial Dysfunction, Vedad Delic

USF Tampa Graduate Theses and Dissertations

Mitochondrial dysfunction plays a pivotal role in the development of aging phenotypes and aging-associated neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and Amyotrophic lateral sclerosis (ALS). Strategies that restore mitochondrial dysfunction may rescue the deficits of central metabolism in these disorders and improve cell survival. For example, we found that modulating the mTOR signaling pathway in a tissue culture model of aging-induced mitochondrial DNA mutation enhanced mitochondrial function as evidenced by increased oxygen consumption. Our previous melatonin studies also led us to hypothesize that caloric restriction and the hormone melatonin would reverse brain mitochondrial dysfunction in animal …