Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medical Sciences

Apoε4 Lowers Energy Expenditure In Females And Impairs Glucose Oxidation By Increasing Flux Through Aerobic Glycolysis, Brandon C. Farmer, Holden C. Williams, Nicholas A. Devanney, Margaret A. Piron, Grant K. Nation, David J. Carter, Adeline E. Walsh, Rebika Khanal, Lyndsay E. A. Young, Jude C. Kluemper, Gabriela Hernandez, Elizabeth J. Allenger, Rachel Mooney, Lesley R. Golden, Cathryn T. Smith, J. Anthony Brandon, Vedant A. Gupta, Philip A. Kern, Matthew S. Gentry, Josh M. Morganti, Ramon C. Sun, Lance A. Johnson Sep 2021

Apoε4 Lowers Energy Expenditure In Females And Impairs Glucose Oxidation By Increasing Flux Through Aerobic Glycolysis, Brandon C. Farmer, Holden C. Williams, Nicholas A. Devanney, Margaret A. Piron, Grant K. Nation, David J. Carter, Adeline E. Walsh, Rebika Khanal, Lyndsay E. A. Young, Jude C. Kluemper, Gabriela Hernandez, Elizabeth J. Allenger, Rachel Mooney, Lesley R. Golden, Cathryn T. Smith, J. Anthony Brandon, Vedant A. Gupta, Philip A. Kern, Matthew S. Gentry, Josh M. Morganti, Ramon C. Sun, Lance A. Johnson

Physiology Faculty Publications

BACKGROUND: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer's disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field.

METHODS: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4.

RESULTS: Single-cell …


CertL Reduces C16 Ceramide, Amyloid-Β Levels, And Inflammation In A Model Of Alzheimer’S Disease, Simone M. Crivelli, Qian Luo, Jo A. A. Stevens, Caterina Giovagnoni, Daan Van Kruining, Gerard Bode, Sandra Den Hoedt, Barbara Hobo, Anna-Lena Scheithauer, Jochen Walter, Monique T. Mulder, Christopher Exley, Matthew Mold, Michelle M. Mielke, Helga E. De Vries, Kristiaan Wouters, Daniel L. A. Van Den Hove, Dusan Berkes, María Dolores Ledesma, Joost Verhaagen, Mario Losen, Erhard Bieberich, Pilar Martinez-Martinez Feb 2021

CertL Reduces C16 Ceramide, Amyloid-Β Levels, And Inflammation In A Model Of Alzheimer’S Disease, Simone M. Crivelli, Qian Luo, Jo A. A. Stevens, Caterina Giovagnoni, Daan Van Kruining, Gerard Bode, Sandra Den Hoedt, Barbara Hobo, Anna-Lena Scheithauer, Jochen Walter, Monique T. Mulder, Christopher Exley, Matthew Mold, Michelle M. Mielke, Helga E. De Vries, Kristiaan Wouters, Daniel L. A. Van Den Hove, Dusan Berkes, María Dolores Ledesma, Joost Verhaagen, Mario Losen, Erhard Bieberich, Pilar Martinez-Martinez

Physiology Faculty Publications

BACKGROUND: Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.

METHODS: A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein …


Predominant Expression Of Alzheimer’S Disease-Associated Bin1 In Mature Oligodendrocytes And Localization To White Matter Tracts, Pierre De Rossi, Virginie Buggia-Prévot, Benjamin L. L. Clayton, Jared B. Vasquez, Carson Van Sanford, Robert J. Andrew, Ruben Lesnick, Alexandra Botté, Carole Deyts, Someya Salem, Eshaan Rao, Richard C. Rice, Angèle Parent, Satyabrata Kar, Brian Popko, Peter Pytel, Steven Estus, Gopal Thinakaran Aug 2016

Predominant Expression Of Alzheimer’S Disease-Associated Bin1 In Mature Oligodendrocytes And Localization To White Matter Tracts, Pierre De Rossi, Virginie Buggia-Prévot, Benjamin L. L. Clayton, Jared B. Vasquez, Carson Van Sanford, Robert J. Andrew, Ruben Lesnick, Alexandra Botté, Carole Deyts, Someya Salem, Eshaan Rao, Richard C. Rice, Angèle Parent, Satyabrata Kar, Brian Popko, Peter Pytel, Steven Estus, Gopal Thinakaran

Physiology Faculty Publications

Background: Genome-wide association studies have identified BIN1 within the second most significant susceptibility locus in late-onset Alzheimer’s disease (AD). BIN1 undergoes complex alternative splicing to generate multiple isoforms with diverse functions in multiple cellular processes including endocytosis and membrane remodeling. An increase in BIN1 expression in AD and an interaction between BIN1 and Tau have been reported. However, disparate descriptions of BIN1 expression and localization in the brain previously reported in the literature and the lack of clarity on brain BIN1 isoforms present formidable challenges to our understanding of how genetic variants in BIN1 increase the risk for AD.

Methods: …