Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Dartmouth Scholarship

Bacteriology

Genes

Articles 1 - 8 of 8

Full-Text Articles in Medical Sciences

Cyclic Di-Gmp-Mediated Repression Of Swarming Motility By Pseudomonas Aeruginosa Pa14 Requires The Motab Stator, S. L. Kuchma, N. J. Delalez, L. M. Filkins, E. A. Snavely, J. P. Armitage, G. A. O'Toole Oct 2015

Cyclic Di-Gmp-Mediated Repression Of Swarming Motility By Pseudomonas Aeruginosa Pa14 Requires The Motab Stator, S. L. Kuchma, N. J. Delalez, L. M. Filkins, E. A. Snavely, J. P. Armitage, G. A. O'Toole

Dartmouth Scholarship

The second messenger cyclic diguanylate (c-di-GMP) plays a critical role in the regulation of motility. In Pseudomonas aeruginosa PA14, c-di-GMP inversely controls biofilm formation and surface swarming motility, with high levels of this dinucleotide signal stimulating biofilm formation and repressing swarming. P. aeruginosa encodes two stator complexes, MotAB and MotCD, that participate in the function of its single polar flagellum. Here we show that the repression of swarming motility requires a functional MotAB stator complex. Mutating the motAB genes restores swarming motility to a strain with artificially elevated levels of c-di-GMP as well as stimulates swarming in the wild-type strain, …


Regulation Of The Mazef Toxin-Antitoxin Module In Staphylococcus Aureus And Its Impact On Sigb Expression, Niles P. Donegan, Ambrose L. Cheung Apr 2009

Regulation Of The Mazef Toxin-Antitoxin Module In Staphylococcus Aureus And Its Impact On Sigb Expression, Niles P. Donegan, Ambrose L. Cheung

Dartmouth Scholarship

In Staphylococcus aureus, the sigB operon codes for the alternative sigma factor σBand its regulators that enable the bacteria to rapidly respond to environmental stresses via redirection of transcriptional priorities. However, a full model of σBregulation in S. aureus has not yet emerged. Earlier data has suggested that mazEF, a toxin-antitoxin (TA) module immediately upstream of the sigB operon, was transcribed with the sigB operon. Here we demonstrate that the promoter PmazE upstream of mazEF is essential for full σB activity and that instead of utilizing autorepression typical of TA systems, sigB …


Crystal Structure Of The Vibrio Cholerae Quorum-Sensing Regulatory Protein Hapr, Rukman S. De Silva, Gabriela Kovacikova, Wei Lin, Ronald K. Taylor, Karen Skorupski, F. Jon Kull May 2007

Crystal Structure Of The Vibrio Cholerae Quorum-Sensing Regulatory Protein Hapr, Rukman S. De Silva, Gabriela Kovacikova, Wei Lin, Ronald K. Taylor, Karen Skorupski, F. Jon Kull

Dartmouth Scholarship

Quorum sensing in Vibrio cholerae involves signaling between two-component sensor protein kinases and the response regulator LuxO to control the expression of the master regulator HapR. HapR, in turn, plays a central role in regulating a number of important processes, such as virulence gene expression and biofilm formation. We have determined the crystal structure of HapR to 2.2-Å resolution. Its structure reveals a dimeric, two-domain molecule with an all-helical structure that is strongly conserved with members of the TetR family of transcriptional regulators. The N-terminal DNA-binding domain contains a helix-turn-helix DNA-binding motif and alteration of certain residues in this domain …


Membrane Association And Multimerization Of Tcpt, The Cognate Atpase Ortholog Of The Vibrio Cholerae Toxin-Coregulated-Pilus Biogenesis Apparatus, Shital A. Tripathi, Ronald K. Taylor Apr 2007

Membrane Association And Multimerization Of Tcpt, The Cognate Atpase Ortholog Of The Vibrio Cholerae Toxin-Coregulated-Pilus Biogenesis Apparatus, Shital A. Tripathi, Ronald K. Taylor

Dartmouth Scholarship

The toxin-coregulated pilus (TCP) is one of the major virulence factors of Vibrio cholerae. Biogenesis of this type 4 pilus (Tfp) requires a number of structural components encoded by the tcp operon. TcpT, the cognate putative ATPase, is required for TCP biogenesis and all TCP-mediated functions. We studied the stability and localization of TcpT in cells containing in-frame deletions in each of the tcp genes. TcpT was detectable in each of the biogenesis mutants except the ΔtcpT strain. TcpT was localized to the inner membrane (IM) in a TcpR-dependent manner. TcpR is a predicted bitopic inner membrane protein …


Sara Positively Controls Bap-Dependent Biofilm Formation In Staphylococcus Aureus, María P. Trotonda, Adhar C. Manna, Ambrose L. Cheung, Iñigo Lasa, José R. Penadés Aug 2005

Sara Positively Controls Bap-Dependent Biofilm Formation In Staphylococcus Aureus, María P. Trotonda, Adhar C. Manna, Ambrose L. Cheung, Iñigo Lasa, José R. Penadés

Dartmouth Scholarship

The biofilm-associated protein Bap is a staphylococcal surface protein involved in biofilm formation. We investigated the influence of the global regulatory locus sarA on bap expression and Bap-dependent biofilm formation in three unrelated Staphylococcus aureus strains. The results showed that Bap-dependent biofilm formation was diminished in the sarA mutants by an agr-independent mechanism. Complementation studies using a sarA clone confirmed that the defect in biofilm formation was due to the sarA mutation. As expected, the diminished capacity to form biofilms in the sarA mutants correlated with the decreased presence of Bap in the bacterial surface. Using transcriptional fusion and …


A Three-Component Regulatory System Regulates Biofilm Maturation And Type Iii Secretion In Pseudomonas Aeruginosa, Sherry L. Kuchma, John P. Connolly, George A. O'Toole Feb 2005

A Three-Component Regulatory System Regulates Biofilm Maturation And Type Iii Secretion In Pseudomonas Aeruginosa, Sherry L. Kuchma, John P. Connolly, George A. O'Toole

Dartmouth Scholarship

Biofilms are structured communities found associated with a wide range of surfaces. Here we report the identification of a three-component regulatory system required for biofilm maturation by Pseudomonas aeruginosa strain PA14. A transposon mutation that altered biofilm formation in a 96-well dish assay originally defined this locus, which is comprised of genes for a putative sensor histidine kinase and two response regulators and has been designated sadARS. Nonpolar mutations in any of the sadARS genes result in biofilms with an altered mature structure but do not confer defects in growth or early biofilm formation, swimming, or twitching motility. After …


Identification Of Sarv (Sa2062), A New Transcriptional Regulator, Is Repressed By Sara And Mgra (Sa0641) And Involved In The Regulation Of Autolysis In Staphylococcus Aureus, Adhar C. Manna, Susham S. Ingavale, Marybeth Maloney, Willem Van Wamel, Ambrose L. Cheung Aug 2004

Identification Of Sarv (Sa2062), A New Transcriptional Regulator, Is Repressed By Sara And Mgra (Sa0641) And Involved In The Regulation Of Autolysis In Staphylococcus Aureus, Adhar C. Manna, Susham S. Ingavale, Marybeth Maloney, Willem Van Wamel, Ambrose L. Cheung

Dartmouth Scholarship

The expression of genes involved in the pathogenesis of Staphylococcus aureus is known to be controlled by global regulatory loci, including agr, sarA, sae, arlRS, lytSR, and sarA-like genes. Here we described a novel transcriptional regulator called sarV of the SarA protein family. The transcription of sarV is low or undetectable under in vitro conditions but is significantly augmented in sarA and mgrA (norR or rat) (SA0641) mutants. The sarA and mgrA genes act as repressors of sarV expression, as confirmed by transcriptional fusion and Northern analysis data. Purified SarA and MgrA proteins bound specifically to separate regions of the …


Sadb Is Required For The Transition From Reversible To Irreversible Attachment During Biofilm Formation By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, George A. O'Toole Jul 2004

Sadb Is Required For The Transition From Reversible To Irreversible Attachment During Biofilm Formation By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, George A. O'Toole

Dartmouth Scholarship

Current models of biofilm formation by Pseudomonas aeruginosa propose that (i) planktonic cells become surface associated in a monolayer, (ii) surface-associated cells form microcolonies by clonal growth and/or aggregation, (iii) microcolonies transition to a mature biofilm comprised of exopolysaccharide-encased macrocolonies, and (iv) cells exit the mature biofilm and reenter the planktonic state. Here we report a new class of P. aeruginosa biofilm mutant that defines the transition from reversible to irreversible attachment and is thus required for monolayer formation. The transposon insertion carried by the sadB199 mutant was mapped to open reading frame PA5346 of P. aeruginosa PA14 and encodes …