Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medical Sciences

Monocyte Anti-Inflammatory Activity Is Dictated By Metabolic Status During Staphylococcus Aureus Biofilm Infection, Kelsey J. Yamada May 2019

Monocyte Anti-Inflammatory Activity Is Dictated By Metabolic Status During Staphylococcus Aureus Biofilm Infection, Kelsey J. Yamada

Theses & Dissertations

Staphylococcus aureus biofilms represent a significant cause of morbidity and economic burden and are often associated with nosocomial infections, including medically implanted devices. In particular, prosthetic joint infections (PJIs) are a growing concern due to the continued increase in orthopedic procedures. Staphylococcal species cause >50% of all PJIs, while S. aureus represents the most invasive and associated with the most morbidity. S. aureus-associated biofilm infections are recalcitrant to antibiotic therapy, due to both the acquisition of genetic elements and metabolic dormancy. Furthermore, S. aureus biofilm infections remain chronic because they cannot be cleared by the immune system. Recent studies …


Protease-Mediated Growth Of Staphylococcus Aureus On Host Proteins Is Opp3 Dependent, Mckenzie K. Lehman, Austin S. Nuxoll, Kelsey J. Yamada, Tammy Kielian, Steven D. Carson, Paul D. Fey Jan 2019

Protease-Mediated Growth Of Staphylococcus Aureus On Host Proteins Is Opp3 Dependent, Mckenzie K. Lehman, Austin S. Nuxoll, Kelsey J. Yamada, Tammy Kielian, Steven D. Carson, Paul D. Fey

Journal Articles: Pathology and Microbiology

Staphylococcus aureus has the ability to cause infections in multiple organ systems, suggesting an ability to rapidly adapt to changing carbon and nitrogen sources. Although there is little information about the nutrients available at specific sites of infection, a mature skin abscess has been characterized as glucose depleted, indicating that peptides and free amino acids are an important source of nutrients for the bacteria. Our studies have found that mutations in enzymes necessary for growth on amino acids, including pyruvate carboxykinase (ΔpckA) and glutamate dehydrogenase (ΔgudB), reduced the ability of the bacteria to proliferate within a …


On The Origin Of Superoxide Dismutase: An Evolutionary Perspective Of Superoxide-Mediated Redox Signaling., Adam J. Case Jan 2017

On The Origin Of Superoxide Dismutase: An Evolutionary Perspective Of Superoxide-Mediated Redox Signaling., Adam J. Case

Journal Articles: Cellular & Integrative Physiology

The field of free radical biology originated with the discovery of superoxide dismutase (SOD) in 1969. Over the last 5 decades, a plethora of research has been performed in species ranging from bacteria to mammals that has elucidated the molecular reaction, subcellular location, and specific isoforms of SOD. However, while humans have only begun to study this class of enzymes over the past 50 years, it has been estimated that these enzymes have existed for billions of years, and may be some of the original enzymes found in primitive life. As life evolved over this expanse of time, these enzymes …