Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Sciences

Differential Leukocyte And Platelet Profiles In Distinct Models Of Traumatic Brain Injury, William Brad Hubbard, Meenakshi Banerjee, Hemendra J. Vekaria, Kanakanagavalli Shravani Prakhya, Smita Joshi, Qingjun Wang, Kathryn E. Saatman, Sidney W. Whiteheart, Patrick G. Sullivan Feb 2021

Differential Leukocyte And Platelet Profiles In Distinct Models Of Traumatic Brain Injury, William Brad Hubbard, Meenakshi Banerjee, Hemendra J. Vekaria, Kanakanagavalli Shravani Prakhya, Smita Joshi, Qingjun Wang, Kathryn E. Saatman, Sidney W. Whiteheart, Patrick G. Sullivan

Spinal Cord and Brain Injury Research Center Faculty Publications

Traumatic brain injury (TBI) affects over 3 million individuals every year in the U.S. There is growing appreciation that TBI can produce systemic modifications, which are in part propagated through blood–brain barrier (BBB) dysfunction and blood–brain cell interactions. As such, platelets and leukocytes contribute to mechanisms of thromboinflammation after TBI. While these mechanisms have been investigated in experimental models of contusion brain injury, less is known regarding acute alterations following mild closed head injury. To investigate the role of platelet dynamics and bioenergetics after TBI, we employed two distinct, well-established models of TBI in mice: the controlled cortical impact (CCI) …


Mitochondria Exert Age-Divergent Effects On Recovery From Spinal Cord Injury, Andrew N. Stewart, Katelyn E. Mcfarlane, Hemendra J. Vekaria, William M. Bailey, Stacey A. Slone, Lauren A. Tranthem, Bei Zhang, Samir P. Patel, Patrick G. Sullivan, John C. Gensel Jan 2021

Mitochondria Exert Age-Divergent Effects On Recovery From Spinal Cord Injury, Andrew N. Stewart, Katelyn E. Mcfarlane, Hemendra J. Vekaria, William M. Bailey, Stacey A. Slone, Lauren A. Tranthem, Bei Zhang, Samir P. Patel, Patrick G. Sullivan, John C. Gensel

Physiology Faculty Publications

The extent that age-dependent mitochondrial dysfunction drives neurodegeneration is not well understood. This study tested the hypothesis that mitochondria contribute to spinal cord injury (SCI)-induced neurodegeneration in an age-dependent manner by using 2,4-dinitrophenol (DNP) to uncouple electron transport, thereby increasing cellular respiration and reducing reactive oxygen species (ROS) production. We directly compared the effects of graded DNP doses in 4- and 14-month-old (MO) SCI-mice and found DNP to have increased efficacy in mitochondria isolated from 14-MO animals. In vivo, all DNP doses significantly exacerbated 4-MO SCI neurodegeneration coincident with worsened recovery. In contrast, low DNP doses (1.0-mg/kg/day) improved tissue …