Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medical Sciences

Reduced Mitochondrial Dna And Oxphos Protein Content In Skeletal Muscle Of Children With Cerebral Palsy, Ferdinand Von Walden, Ivan J. Vechetti Jr., Davis A. Englund, Vandré C. Figueiredo, Rodrigo Fernandez-Gonzalo, Kevin A. Murach, Jessica Pingel, John J. Mccarthy, Per Stål, Eva Pontén Jun 2021

Reduced Mitochondrial Dna And Oxphos Protein Content In Skeletal Muscle Of Children With Cerebral Palsy, Ferdinand Von Walden, Ivan J. Vechetti Jr., Davis A. Englund, Vandré C. Figueiredo, Rodrigo Fernandez-Gonzalo, Kevin A. Murach, Jessica Pingel, John J. Mccarthy, Per Stål, Eva Pontén

Physiology Faculty Publications

AIM: To provide a detailed gene and protein expression analysis related to mitochondrial biogenesis and assess mitochondrial content in skeletal muscle of children with cerebral palsy (CP).

METHOD: Biceps brachii muscle samples were collected from 19 children with CP (mean [SD] age 15y 4mo [2y 6mo], range 9-18y, 16 males, three females) and 10 typically developing comparison children (mean [SD] age 15y [4y], range 7-21y, eight males, two females). Gene expression (quantitative reverse transcription polymerase chain reaction [PCR]), mitochondrial DNA (mtDNA) to genomic DNA ratio (quantitative PCR), and protein abundance (western blotting) were analyzed. Microarray data sets (CP/aging/bed rest) were …


CertL Reduces C16 Ceramide, Amyloid-Β Levels, And Inflammation In A Model Of Alzheimer’S Disease, Simone M. Crivelli, Qian Luo, Jo A. A. Stevens, Caterina Giovagnoni, Daan Van Kruining, Gerard Bode, Sandra Den Hoedt, Barbara Hobo, Anna-Lena Scheithauer, Jochen Walter, Monique T. Mulder, Christopher Exley, Matthew Mold, Michelle M. Mielke, Helga E. De Vries, Kristiaan Wouters, Daniel L. A. Van Den Hove, Dusan Berkes, María Dolores Ledesma, Joost Verhaagen, Mario Losen, Erhard Bieberich, Pilar Martinez-Martinez Feb 2021

CertL Reduces C16 Ceramide, Amyloid-Β Levels, And Inflammation In A Model Of Alzheimer’S Disease, Simone M. Crivelli, Qian Luo, Jo A. A. Stevens, Caterina Giovagnoni, Daan Van Kruining, Gerard Bode, Sandra Den Hoedt, Barbara Hobo, Anna-Lena Scheithauer, Jochen Walter, Monique T. Mulder, Christopher Exley, Matthew Mold, Michelle M. Mielke, Helga E. De Vries, Kristiaan Wouters, Daniel L. A. Van Den Hove, Dusan Berkes, María Dolores Ledesma, Joost Verhaagen, Mario Losen, Erhard Bieberich, Pilar Martinez-Martinez

Physiology Faculty Publications

BACKGROUND: Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.

METHODS: A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein …


Mitochondria Exert Age-Divergent Effects On Recovery From Spinal Cord Injury, Andrew N. Stewart, Katelyn E. Mcfarlane, Hemendra J. Vekaria, William M. Bailey, Stacey A. Slone, Lauren A. Tranthem, Bei Zhang, Samir P. Patel, Patrick G. Sullivan, John C. Gensel Jan 2021

Mitochondria Exert Age-Divergent Effects On Recovery From Spinal Cord Injury, Andrew N. Stewart, Katelyn E. Mcfarlane, Hemendra J. Vekaria, William M. Bailey, Stacey A. Slone, Lauren A. Tranthem, Bei Zhang, Samir P. Patel, Patrick G. Sullivan, John C. Gensel

Physiology Faculty Publications

The extent that age-dependent mitochondrial dysfunction drives neurodegeneration is not well understood. This study tested the hypothesis that mitochondria contribute to spinal cord injury (SCI)-induced neurodegeneration in an age-dependent manner by using 2,4-dinitrophenol (DNP) to uncouple electron transport, thereby increasing cellular respiration and reducing reactive oxygen species (ROS) production. We directly compared the effects of graded DNP doses in 4- and 14-month-old (MO) SCI-mice and found DNP to have increased efficacy in mitochondria isolated from 14-MO animals. In vivo, all DNP doses significantly exacerbated 4-MO SCI neurodegeneration coincident with worsened recovery. In contrast, low DNP doses (1.0-mg/kg/day) improved tissue …