Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

Conference

Rats

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medical Sciences

Interactions Between Repetitive Mild Traumatic Brain Injury And Methylphenidate Administration On Catecholamine Transporter Protein Levels Within The Rodent Prefrontal Cortex, Anna Abrimian, Eleni Papadopoulos, Christopher P. Knapp, J. Loweth, Barry Waterhouse, Rachel Navarra May 2024

Interactions Between Repetitive Mild Traumatic Brain Injury And Methylphenidate Administration On Catecholamine Transporter Protein Levels Within The Rodent Prefrontal Cortex, Anna Abrimian, Eleni Papadopoulos, Christopher P. Knapp, J. Loweth, Barry Waterhouse, Rachel Navarra

Rowan-Virtua Research Day

It is theorized that low concentrations of dopamine (DA) and norepinephrine (NE) within in the prefrontal cortex (PFC) following traumatic brain injury (TBI) leads to increased risky behavior. Our lab has shown that repeated mild TBI (rmTBI) sex-differentially increases risky behavior in a rodent model. Methylphenidate (MPH) is a psychostimulant drug used to treat symptoms of Attention-Deficit Hyperactivity Disorder (ADHD), also driven by a hypo-catecholaminergic PFC. MPH elevates catecholamine levels by blocking DA and NE transporters, DAT and NET. While the potential of psychostimulants to treat post-TBI symptoms have been explored, the effects of sub-chronic MPH on transporter levels following …


Physiological Response And Tissue Damage Following Different Depths Of Impact In A Rodent Model Of Mild Traumatic Brain Injury, Haven K. Predale, Christopher P. Knapp, Barry D. Waterhouse, Rachel L. Navarra May 2021

Physiological Response And Tissue Damage Following Different Depths Of Impact In A Rodent Model Of Mild Traumatic Brain Injury, Haven K. Predale, Christopher P. Knapp, Barry D. Waterhouse, Rachel L. Navarra

Rowan-Virtua Research Day

Mild traumatic brain injury (mTBI) is a serious public health concern that can result in significant neurological and behavioral deficit. mTBI results from impact to the head and can be repetitive in nature, especially in sports and domestic violence cases. Our laboratory studies the effects of repetitive mTBI on risky choice behavior in rodents using a closed-head controlled cortical impact (CH-CCI) model of injury and a well-established probabilistic discounting task that assesses risk-based decision-making behavior. We have recently found that females, but not males, display transient increases in risky choice behavior following three CH-CI’s delivered at 5.5m/s velocity and 2.5 …