Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Medical Sciences

Loss Of Vglut3 Produces Circadian-Dependent Hyperdopaminergia And Ameliorates Motor Dysfunction And L-Dopa-Mediated Dyskinesias In A Model Of Parkinson's Disease., Christopher B. Divito, Kathy Steece-Collier, Daniel T. Case, Sean-Paul G. Williams, Jennifer A. Stancati, Lianteng Zhi, Maria E. Rubio, Caryl E. Sortwell, Timothy J. Collier, David Sulzer, Robert H. Edwards, Hui Zhang, Rebecca P. Seal Nov 2015

Loss Of Vglut3 Produces Circadian-Dependent Hyperdopaminergia And Ameliorates Motor Dysfunction And L-Dopa-Mediated Dyskinesias In A Model Of Parkinson's Disease., Christopher B. Divito, Kathy Steece-Collier, Daniel T. Case, Sean-Paul G. Williams, Jennifer A. Stancati, Lianteng Zhi, Maria E. Rubio, Caryl E. Sortwell, Timothy J. Collier, David Sulzer, Robert H. Edwards, Hui Zhang, Rebecca P. Seal

Department of Neuroscience Faculty Papers

UNLABELLED: The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion …


Early Inflammatory Mediator Gene Expression In Two Models Of Traumatic Brain Injury: Ex Vivo Cortical Slice In Mice And In Vivo Cortical Impact In Piglets, David J. Graber, Beth A. Costine, William F. Hickey Apr 2015

Early Inflammatory Mediator Gene Expression In Two Models Of Traumatic Brain Injury: Ex Vivo Cortical Slice In Mice And In Vivo Cortical Impact In Piglets, David J. Graber, Beth A. Costine, William F. Hickey

Dartmouth Scholarship

Background: The immunological response during the first 24 hours after traumatic brain injury (TBI) may be a critical therapeutic interval for limiting the secondary neuronal damage that is influenced by enhanced inflammatory mediator expression.

Methods: To gain further insight of the early injury response, we examined the expression of several inflammatory genes by real-time qPCR as a function of time or distance from injury in two distinct mammalian models: an ex vivo mouse cortical slice injury system and an in vivo piglet model of brain injury.


Inhibition Of Soluble Tumor Necrosis Factor Ameliorates Synaptic Alterations And Ca2+ Dysregulation In Aged Rats, Diana M. Sama, Hafiz Mohmmad Abdul, Jennifer L. Furman, Irina A. Artiushin, David E. Szymkowski, Stephen W. Scheff, Christopher M. Norris May 2012

Inhibition Of Soluble Tumor Necrosis Factor Ameliorates Synaptic Alterations And Ca2+ Dysregulation In Aged Rats, Diana M. Sama, Hafiz Mohmmad Abdul, Jennifer L. Furman, Irina A. Artiushin, David E. Szymkowski, Stephen W. Scheff, Christopher M. Norris

Graduate Center for Gerontology Faculty Publications

The role of tumor necrosis factor α (TNF) in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1) are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2) in aged (22 months) but not young adult (6 months) Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4-6 week) intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits …


Mitogen Activated Protein Kinase Phosphatase-1 Prevents The Development Of Tactile Sensitivity In A Rodent Model Of Neuropathic Pain, Christian Ndong, Russell P. Landry, Joyce A. Deleo, Edgar A. Romero-Sandoval Apr 2012

Mitogen Activated Protein Kinase Phosphatase-1 Prevents The Development Of Tactile Sensitivity In A Rodent Model Of Neuropathic Pain, Christian Ndong, Russell P. Landry, Joyce A. Deleo, Edgar A. Romero-Sandoval

Dartmouth Scholarship

Neuropathic pain due to nerve injury is one of the most difficult types of pain to treat. Following peripheral nerve injury, neuronal and glial plastic changes contribute to central sensitization and perpetuation of mechanical hypersensitivity in rodents. The mitogen activated protein kinase (MAPK) family is pivotal in this spinal cord plasticity. MAPK phosphatases (MKPs) limit inflammatory processes by dephosphorylating MAPKs. For example, MKP-1 preferentially dephosphorylates p-p38. Since spinal p-p38 is pivotal for the development of chronic hypersensitivity in rodent models of pain, and p-p38 inhibitors have shown clinical potential in acute and chronic pain patients, we hypothesize that induction of …


Proteomic Assessment Of A Cell Model Of Spinal Muscular Atrophy., Chia-Yen Wu, Dosh Whye, Lisa Glazewski, Leila Choe, Douglas Kerr, Kelvin H Lee, Robert W Mason, Wenlan Wang Mar 2011

Proteomic Assessment Of A Cell Model Of Spinal Muscular Atrophy., Chia-Yen Wu, Dosh Whye, Lisa Glazewski, Leila Choe, Douglas Kerr, Kelvin H Lee, Robert W Mason, Wenlan Wang

Department of Pediatrics Faculty Papers

BACKGROUND: Deletion or mutation(s) of the survival motor neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA), a neuromuscular disease characterized by spinal motor neuron death and muscle paralysis. Complete loss of the SMN protein is embryonically lethal, yet reduced levels of this protein result in selective death of motor neurons. Why motor neurons are specifically targeted by SMN deficiency remains to be determined. In this study, embryonic stem (ES) cells derived from a severe SMA mouse model were differentiated into motor neurons in vitro by addition of retinoic acid and sonic hedgehog agonist. Proteomic and western blot analyses were …


Fus Transgenic Rats Develop The Phenotypes Of Amyotrophic Lateral Sclerosis And Frontotemporal Lobar Degeneration., Cao Huang, Hongxia Zhou, Jianbin Tong, Han Chen, Yong-Jian Liu, Dian Wang, Xiaotao Wei, Xu-Gang Xia Mar 2011

Fus Transgenic Rats Develop The Phenotypes Of Amyotrophic Lateral Sclerosis And Frontotemporal Lobar Degeneration., Cao Huang, Hongxia Zhou, Jianbin Tong, Han Chen, Yong-Jian Liu, Dian Wang, Xiaotao Wei, Xu-Gang Xia

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Fused in Sarcoma (FUS) proteinopathy is a feature of frontotemporal lobar dementia (FTLD), and mutation of the fus gene segregates with FTLD and amyotrophic lateral sclerosis (ALS). To study the consequences of mutation in the fus gene, we created transgenic rats expressing the human fus gene with or without mutation. Overexpression of a mutant (R521C substitution), but not normal, human FUS induced progressive paralysis resembling ALS. Mutant FUS transgenic rats developed progressive paralysis secondary to degeneration of motor axons and displayed a substantial loss of neurons in the cortex and hippocampus. This neuronal loss was accompanied by ubiquitin aggregation and …


Progressive Changes In Microglia And Macrophages In Spinal Cord And Peripheral Nerve In The Transgenic Rat Model Of Amyotrophic Lateral Sclerosis, David J. Graber, William F. Hickey, Brent T. Harris Jan 2010

Progressive Changes In Microglia And Macrophages In Spinal Cord And Peripheral Nerve In The Transgenic Rat Model Of Amyotrophic Lateral Sclerosis, David J. Graber, William F. Hickey, Brent T. Harris

Dartmouth Scholarship

The role of neuroinflammation in motor neuron death of amyotrophic lateral sclerosis (ALS) is unclear. The human mutant superoxide dismutase-1 (hmSOD1)-expressing murine transgenic model of ALS has provided some insight into changes in microglia activity during disease progression. The purpose of this study was to gain further knowledge by characterizing the immunological changes during disease progression in the spinal cord and peripheral nerve using the more recently developed hmSOD1 rat transgenic model of ALS. Using immunohistochemistry, the extent and intensity of tissue CD11b expression in spinal cord, lumbar nerve roots, and sciatic nerve were evaluated in hmSOD1 rats that were …


Mitochondrial Mislocalization Underlies Abeta42-Induced Neuronal Dysfunction In A Drosophila Model Of Alzheimer's Disease., Kanae Iijima-Ando, Stephen A Hearn, Christopher Shenton, Anthony Gatt, Lijuan Zhao, Koichi Iijima Dec 2009

Mitochondrial Mislocalization Underlies Abeta42-Induced Neuronal Dysfunction In A Drosophila Model Of Alzheimer's Disease., Kanae Iijima-Ando, Stephen A Hearn, Christopher Shenton, Anthony Gatt, Lijuan Zhao, Koichi Iijima

Department of Biochemistry and Molecular Biology Faculty Papers

The amyloid-beta 42 (Abeta42) is thought to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial …


The Cns Role Of Toll-Like Receptor 4 In Innate Neuroimmunity And Painful Neuropathy, Flobert Y. Tanga, Nancy Nutile-Mcmenemy, Joyce A. Deleo Apr 2005

The Cns Role Of Toll-Like Receptor 4 In Innate Neuroimmunity And Painful Neuropathy, Flobert Y. Tanga, Nancy Nutile-Mcmenemy, Joyce A. Deleo

Dartmouth Scholarship

Neuropathic pain remains a prevalent and persistent clinical problem because of our incomplete understanding of its pathogenesis. This study demonstrates for the first time, to our knowledge, a critical role for CNS innate immunity by means of microglial Toll-like receptor 4 (TLR4) in the induction phase of behavioral hypersensitivity in a mouse and rat model of neuropathy. We hypothesized that after L5 nerve transection, CNS neuroimmune activation and subsequent cytokine expression are triggered by the stimulation of microglial membrane-bound TLR4. To test this hypothesis, experiments were undertaken to assess tactile and thermal hypersensitivity in genetically altered (i.e., TLR4 knockout and …