Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 270

Full-Text Articles in Medical Sciences

Aspergillus Fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis Through Modulation Of Chitin Synthase Activity, Arsa Thammahong, Alayna K. Caffrey-Card, Sourabh Dhingra, Joshua J. Obar, Robert Cramer Apr 2017

Aspergillus Fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis Through Modulation Of Chitin Synthase Activity, Arsa Thammahong, Alayna K. Caffrey-Card, Sourabh Dhingra, Joshua J. Obar, Robert Cramer

Dartmouth Scholarship

Trehalose biosynthesis is found in fungi but not humans. Proteins involved in trehalose biosynthesis are essential for fungal pathogen virulence in humans and plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in the human pathogen Aspergillus fumigatus significantly alters cell wall structure and integrity, though the mechanistic link between these virulence-associated pathways remains enigmatic. Here we characterize genes, called tslAand tslB, which encode proteins that contain domains similar to those corresponding to trehalose-6-phosphate phosphatase but lack critical catalytic residues for phosphatase activity. Loss of tslA reduces trehalose content in both conidia and mycelia, impairs cell wall …


Filamentous Fungal Carbon Catabolite Repression Supports Metabolic Plasticity And Stress Responses Essential For Disease Progression, Sarah R. Beattie, Kenneth Mark, Arsa Thammahong, Laure Nicolas Annick Ries, Sourabh Dhingra, Alayna Caffrey-Carr, Chao Cheng Apr 2017

Filamentous Fungal Carbon Catabolite Repression Supports Metabolic Plasticity And Stress Responses Essential For Disease Progression, Sarah R. Beattie, Kenneth Mark, Arsa Thammahong, Laure Nicolas Annick Ries, Sourabh Dhingra, Alayna Caffrey-Carr, Chao Cheng

Dartmouth Scholarship

Aspergillus fumigatus is responsible for a disproportionate number of invasive mycosis cases relative to other common filamentous fungi. While many fungal factors critical for infection establishment are known, genes essential for disease persistence and progression are ill defined. We propose that fungal factors that promote navigation of the rapidly changing nutrient and structural landscape characteristic of disease progression represent untapped clinically relevant therapeutic targets. To this end, we find that A. fumigatus requires a carbon catabolite repression (CCR) mediated genetic network to support in vivo fungal fitness and disease progression. While CCR as mediated by the transcriptional repressor CreA is …


A New Class Of Inhibitors Of The Arac Family Virulence Regulator Vibrio Cholerae Toxt, Anne K. Woodbrey, Evans O. Onyango, Maria Pellegrini, Gabriela Kovacikova, Ronald Taylor, Gordon Gribble, F. Jon Kull Mar 2017

A New Class Of Inhibitors Of The Arac Family Virulence Regulator Vibrio Cholerae Toxt, Anne K. Woodbrey, Evans O. Onyango, Maria Pellegrini, Gabriela Kovacikova, Ronald Taylor, Gordon Gribble, F. Jon Kull

Dartmouth Scholarship

Vibrio cholerae is responsible for the diarrheal disease cholera that infects millions of people worldwide. While vaccines protecting against cholera exist, and oral rehydration therapy is an effective treatment method, the disease will remain a global health threat until long-term solutions such as improved sanitation and access to clean water become widely available. Because of this, there is a pressing need for potent therapeutics that can either mitigate cholera symptoms, or act prophylactically to prevent the virulent effects of a cholera infection. Here we report the design, synthesis, and characterization of a set of compounds that bind and inhibit ToxT, …


The Fatty Acid Regulator Fadr Influences The Expression Of The Virulence Cascade In The El Tor Biotype Of Vibrio Cholerae By Modulating The Levels Of Toxt Via Two Different Mechanisms, Gabriela Kovacikova, Wei Lin, Ronald K. Taylor, Karen Skorupski Jan 2017

The Fatty Acid Regulator Fadr Influences The Expression Of The Virulence Cascade In The El Tor Biotype Of Vibrio Cholerae By Modulating The Levels Of Toxt Via Two Different Mechanisms, Gabriela Kovacikova, Wei Lin, Ronald K. Taylor, Karen Skorupski

Dartmouth Scholarship

FadR is a master regulator of fatty acid (FA) metabolism that coordinates the pathways of FA degradation and biosynthesis in enteric bacteria. We show here that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expression of the virulence cascade by influencing both the transcription and the posttranslational regulation of the master virulence regulator ToxT. FadR is a transcriptional regulator that represses the expression of genes involved in FA degradation, activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and also activates the expression of two operons involved in saturated FA (SFA) biosynthesis. …


Pseudomonas Aeruginosa Sabotages The Generation Of Host Proresolving Lipid Mediators, Becca A. Flitter, Kelli L. Hvorecny, Emiko Ono, Taylor Eddens Jan 2017

Pseudomonas Aeruginosa Sabotages The Generation Of Host Proresolving Lipid Mediators, Becca A. Flitter, Kelli L. Hvorecny, Emiko Ono, Taylor Eddens

Dartmouth Scholarship

Recurrent Pseudomonas aeruginosa infections coupled with robust, damaging neutrophilic inflammation characterize the chronic lung disease cystic fibrosis (CF). The proresolving lipid mediator, 15-epi lipoxin A4 (15-epi LXA4), plays a critical role in limiting neutrophil activation and tissue inflammation, thus promoting the return to tissue homeostasis. Here, we show that a secreted P. aeruginosa epoxide hydrolase, cystic fibrosis transmembrane conductance regulator inhibitory factor (Cif), can disrupt 15-epi LXA4 transcellular biosynthesis and function. In the airway, 15-epi LXA4 production is stimulated by the epithelial-derived eicosanoid 14,15-epoxyeicosatrienoic acid (14,15-EET). Cif sabotages the production of 15-epi LXA4 by rapidly hydrolyzing 14,15-EET into its cognate …


The Vibrio Cholerae Minor Pilin Tcpb Initiates Assembly And Retraction Of The Toxin-Coregulated Pilus, Dixon Ng, Tony Harn, Tuba Altindal, Subramania Kolappan, Jarrad Marles, Rajan Lala, Ingrid Spielman, Yang Gao, Caitlyn Hauke, Gabriela Kovacikova Dec 2016

The Vibrio Cholerae Minor Pilin Tcpb Initiates Assembly And Retraction Of The Toxin-Coregulated Pilus, Dixon Ng, Tony Harn, Tuba Altindal, Subramania Kolappan, Jarrad Marles, Rajan Lala, Ingrid Spielman, Yang Gao, Caitlyn Hauke, Gabriela Kovacikova

Dartmouth Scholarship

Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent …


Global Role Of Cyclic Amp Signaling In Ph-Dependent Responses In Candida Albicans, Jeffrey M. Hollomon, Nora Grahl, Sven D. Willger, Katja Koeppen, Deborah A. Hogan Nov 2016

Global Role Of Cyclic Amp Signaling In Ph-Dependent Responses In Candida Albicans, Jeffrey M. Hollomon, Nora Grahl, Sven D. Willger, Katja Koeppen, Deborah A. Hogan

Dartmouth Scholarship

Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished …


Signaling Through Lrg1, Rho1 And Pkc1 Governs Candida Albicans Morphogenesis In Response To Diverse Cues, Jinglin L. Xie, Nora Grahl, Trevor Sless, Michelle Leach, Sang Hu Kim, Deborah Hogan Oct 2016

Signaling Through Lrg1, Rho1 And Pkc1 Governs Candida Albicans Morphogenesis In Response To Diverse Cues, Jinglin L. Xie, Nora Grahl, Trevor Sless, Michelle Leach, Sang Hu Kim, Deborah Hogan

Dartmouth Scholarship

The capacity to transition between distinct morphological forms is a key virulence trait for diverse fungal pathogens. A poignant example of a leading opportunistic fungal pathogen of humans for which an environmentally responsive developmental program underpins virulence is Candida albicans. C. albicans mutants that are defective in the transition between yeast and filamentous forms typically have reduced virulence. Although many positive regulators of C. albicans filamentation have been defined, there are fewer negative regulators that have been implicated in repression of filamentation in the absence of inducing cues. To discover novel negative regulators of filamentation, we screened …


Immune- And Nonimmune-Compartment-Specific Interferon Responses Are Critical Determinants Of Herpes Simplex Virus-Induced Generalized Infections And Acute Liver Failure, Zachary M. Parker, Tracy Jo Pasieka, George A. Parker, David A. Leib Sep 2016

Immune- And Nonimmune-Compartment-Specific Interferon Responses Are Critical Determinants Of Herpes Simplex Virus-Induced Generalized Infections And Acute Liver Failure, Zachary M. Parker, Tracy Jo Pasieka, George A. Parker, David A. Leib

Dartmouth Scholarship

The interferon (IFN) response to viral pathogens is critical for host survival. In humans and mouse models, defects in IFN responses can result in lethal herpes simplex virus 1 (HSV-1) infections, usually from encephalitis. Although rare, HSV-1 can also cause fulminant hepatic failure, which is often fatal. Although herpes simplex encephalitis has been extensively studied, HSV-1 generalized infections and subsequent acute liver failure are less well understood. We previously demonstrated that IFN-αβγR-/- mice are exquisitely susceptible to liver infection following corneal infection with HSV-1. In this study, we used bone marrow chimeras of IFN-αβγR-/- (AG129) and wild-type (WT; 129SvEv) mice …


Heterogeneity Among Isolates Reveals That Fitness In Low Oxygen Correlates With Aspergillus Fumigatus Virulence, Caitlin H. Kowalski, Sarah R. Beattie, Kevin K. Fuller, Elizabeth A. Mcgurk, Yi-Wei Tang, Tobias Hohl, Joshua Obar, Robert Cramer Jr. Sep 2016

Heterogeneity Among Isolates Reveals That Fitness In Low Oxygen Correlates With Aspergillus Fumigatus Virulence, Caitlin H. Kowalski, Sarah R. Beattie, Kevin K. Fuller, Elizabeth A. Mcgurk, Yi-Wei Tang, Tobias Hohl, Joshua Obar, Robert Cramer Jr.

Dartmouth Scholarship

Previous work has shown that environmental and clinical isolates of Aspergillus fumigatus represent a diverse population that occupies a variety of niches, has extensive genetic diversity, and exhibits virulence heterogeneity in a number of animal models of invasive pulmonary aspergillosis (IPA). However, mechanisms explaining differences in virulence among A. fumigatus isolates remain enigmatic. Here, we report a significant difference in virulence of two common lab strains, CEA10 and AF293, in the murine triamcinolone immunosuppression model of IPA, in which we previously identified severe low oxygen microenvironments surrounding fungal lesions. Therefore, we hypothesize that the ability to thrive within these lesions …


Requirements For Pseudomonas Aeruginosa Type I-F Crispr-Cas Adaptation Determined Using A Biofilm Enrichment Assay, Gary E. Heussler, Jon L. Miller, Courtney E. Price, Alan J. Collins Aug 2016

Requirements For Pseudomonas Aeruginosa Type I-F Crispr-Cas Adaptation Determined Using A Biofilm Enrichment Assay, Gary E. Heussler, Jon L. Miller, Courtney E. Price, Alan J. Collins

Dartmouth Scholarship

CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated protein) systems are diverse and found in many archaea and bacteria. These systems have mainly been characterized as adaptive immune systems able to protect against invading mobile genetic elements, including viruses. The first step in this protection is acquisition of spacer sequences from the invader DNA and incorporation of those sequences into the CRISPR array, termed CRISPR adaptation. Progress in understanding the mechanisms and requirements of CRISPR adaptation has largely been accomplished using overexpression of cas genes or plasmid loss assays; little work has focused on endogenous CRISPR-acquired immunity from viral predation. …


Effects Of Tcpb Mutations On Biogenesis And Function Of The Toxin-Coregulated Pilus, The Type Ivb Pilus Of Vibrio Cholerae, Yang Gao, Caitlyn A. Hauke, Jarrad M. Marles, Ronald K. Taylor Aug 2016

Effects Of Tcpb Mutations On Biogenesis And Function Of The Toxin-Coregulated Pilus, The Type Ivb Pilus Of Vibrio Cholerae, Yang Gao, Caitlyn A. Hauke, Jarrad M. Marles, Ronald K. Taylor

Dartmouth Scholarship

Vibrio cholerae is the etiological agent of the acute intestinal disorder cholera. The toxin-coregulated pilus (TCP), a type IVb pilus, is an essential virulence factor of V. cholerae. Recent work has shown TcpB is a large minor pilin encoded within the tcp operon. TcpB contributes to efficient pilus formation and is essential for all TCP functions. Here we have initiated a detailed, targeted mutagenesis approach to further characterize this salient TCP component. We have identified (thus far) 20 residues of TcpB, which affect either the steady state level of TcpB or alter one or more TCP functions. This study …


Microrna Mir-155 Is Necessary For Efficient Gammaherpesvirus Reactivation From Latency, But Not For Establishment Of Latency, Rebecca L. Crepeau, Peisheng Zhang, Edward J. Usherwood Jun 2016

Microrna Mir-155 Is Necessary For Efficient Gammaherpesvirus Reactivation From Latency, But Not For Establishment Of Latency, Rebecca L. Crepeau, Peisheng Zhang, Edward J. Usherwood

Dartmouth Scholarship

MicroRNA-155 (miR-155) has been shown to play significant roles in the immune response, including in the formation of germinal centers (GC) and the development and maturation of T follicular helper (Tfh) cells. There is in vitro evidence to support a critical role for cellular miR-155 and viral miR-155 homologs in the establishment of gammaherpesvirus latency in B cells. We sought to determine the contribution of miR-155 to the establishment and maintenance of latency in vivousing murine gammaherpesvirus (MHV-68) infection. MHV-68-infected mice deficient in miR-155 exhibited decreases in GC B cells and Tfh cells. However, the frequencies of spleen cells …


Cyclic Di-Gmp-Regulated Periplasmic Proteolysis Of A Pseudomonas Aeruginosa Type Vb Secretion System Substrate, Richard B. Cooley, T. Jarrod Smith, Wilfred Leung, Valerie Tierney, Bradley Borlee, George A. O'Toole, Holger Sondermann Jun 2016

Cyclic Di-Gmp-Regulated Periplasmic Proteolysis Of A Pseudomonas Aeruginosa Type Vb Secretion System Substrate, Richard B. Cooley, T. Jarrod Smith, Wilfred Leung, Valerie Tierney, Bradley Borlee, George A. O'Toole, Holger Sondermann

Dartmouth Scholarship

We previously identified a second-messenger-regulated signaling system in the environmental bacterium Pseudomonas fluorescens which controls biofilm formation in response to levels of environmental inorganic phosphate. This system contains the transmembrane cyclic di-GMP (c-di-GMP) receptor LapD and the periplasmic protease LapG. LapD regulates LapG and controls the ability of this protease to process a large cell surface adhesin protein, LapA. While LapDG orthologs can be identified in diverse


The Pseudomonas Aeruginosa Efflux Pump Mexghi-Opmd Transports A Natural Phenazine That Controls Gene Expression And Biofilm Development, Hassan Sakhtah, Leslie Koyama, Yihan Zhang, Diana K. Morales, Blanche Fields, Alexa Price-Whelan, Deborah Hogan Jun 2016

The Pseudomonas Aeruginosa Efflux Pump Mexghi-Opmd Transports A Natural Phenazine That Controls Gene Expression And Biofilm Development, Hassan Sakhtah, Leslie Koyama, Yihan Zhang, Diana K. Morales, Blanche Fields, Alexa Price-Whelan, Deborah Hogan

Dartmouth Scholarship

Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We …


Signaling In Effector Lymphocytes: Insights Toward Safer Immunotherapy, Kamalakannan Rajasekaran, Matthew J. Riese, Sridhar Rao, Li Wang, Monica Thakar, Charles Sentman, Subramaniam Malarkannan May 2016

Signaling In Effector Lymphocytes: Insights Toward Safer Immunotherapy, Kamalakannan Rajasekaran, Matthew J. Riese, Sridhar Rao, Li Wang, Monica Thakar, Charles Sentman, Subramaniam Malarkannan

Dartmouth Scholarship

Receptors on T and NK cells systematically propagate highly complex signaling cascades that direct immune effector functions, leading to protective immunity. While extensive studies have delineated hundreds of signaling events that take place upon receptor engagement, the precise molecular mechanism that differentially regulates the induction or repression of a unique effector function is yet to be fully defined. Such knowledge can potentiate the tailoring of signal transductions and transform cancer immunotherapies. Targeted manipulations of signaling cascades can augment one effector function such as antitumor cytotoxicity while contain the overt generation of pro-inflammatory cytokines that contribute to treatment-related toxicity such as …


Friendly Fire: Biological Functions And Consequences Of Chromosomal Targeting By Crispr-Cas Systems, Gary E. Heussler, George A. O'Toole May 2016

Friendly Fire: Biological Functions And Consequences Of Chromosomal Targeting By Crispr-Cas Systems, Gary E. Heussler, George A. O'Toole

Dartmouth Scholarship

Clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) systems in bacteria and archaea target foreign elements, such as bacteriophages and conjugative plasmids, through the incorporation of short sequences (termed spacers) from the foreign element into the CRISPR array, thereby allowing sequence-specific targeting of the invader. Thus, CRISPR-Cas systems are typically considered a microbial adaptive immune system. While many of these incorporated spacers match targets on bacteriophages and plasmids, a noticeable number are derived from chromosomal DNA. While usually lethal to the self-targeting bacteria, in certain circumstances, these self-targeting spacers can have profound effects in regard to microbial biology, including functions …


Pilz Domain Protein Flgz Mediates Cyclic Di-Gmp-Dependent Swarming Motility Control In Pseudomonas Aeruginosa, Amy Baker, Andreas Diepold, Sherry Kuchma, Jessie Scott, Dae Gon Ha, Giulia Orazi, Judith Armitage, George A. O'Toole Apr 2016

Pilz Domain Protein Flgz Mediates Cyclic Di-Gmp-Dependent Swarming Motility Control In Pseudomonas Aeruginosa, Amy Baker, Andreas Diepold, Sherry Kuchma, Jessie Scott, Dae Gon Ha, Giulia Orazi, Judith Armitage, George A. O'Toole

Dartmouth Scholarship

The second messenger cyclic diguanylate (c-di-GMP) is an important regulator of motility in many bacterial species. In Pseudomonas aeruginosa, elevated levels of c-di-GMP promote biofilm formation and repress flagellum-driven swarming motility. The rotation of P. aeruginosa's polar flagellum is controlled by two distinct stator complexes, MotAB, which cannot support swarming motility, and MotCD, which promotes swarming motility. Here we show that when c-di-GMP levels are elevated, swarming motility is repressed by the PilZ domain-containing protein FlgZ and by Pel polysaccharide production. We demonstrate that FlgZ interacts specifically with the motility-promoting stator protein MotC in a c-di-GMP-dependent manner and that a …


The Inhibitory Site Of A Diguanylate Cyclase Is A Necessary Element For Interaction And Signaling With An Effector Protein, Kurt M. Dahlstrom, Krista M. Giglio, Holger Sondermann, George A. O'Toole Mar 2016

The Inhibitory Site Of A Diguanylate Cyclase Is A Necessary Element For Interaction And Signaling With An Effector Protein, Kurt M. Dahlstrom, Krista M. Giglio, Holger Sondermann, George A. O'Toole

Dartmouth Scholarship

Many bacteria contain large cyclic diguanylate (c-di-GMP) signaling networks made of diguanylate cyclases (DGCs) and phosphodiesterases that can direct cellular activities sensitive to c-di-GMP levels. While DGCs synthesize c-di-GMP, many DGCs also contain an autoinhibitory site (I-site) that binds c-di-GMP to halt excess production of this small molecule, thus controlling the amount of c-di-GMP available to bind to target proteins in the cell. Many DGCs studied to date have also been found to signal for a specific c-di-GMP-related process, and although recent studies have suggested that physical interaction between DGCs and target proteins may provide this signaling fidelity, the importance …


Herpes Simplex Virus And Interferon Signaling Induce Novel Autophagic Clusters In Sensory Neurons, Sarah Katzenell, David A. Leib Feb 2016

Herpes Simplex Virus And Interferon Signaling Induce Novel Autophagic Clusters In Sensory Neurons, Sarah Katzenell, David A. Leib

Dartmouth Scholarship

Herpes simplex virus 1 (HSV-1) establishes lifelong infection in the neurons of trigeminal ganglia (TG), cycling between productive infection and latency. Neuronal antiviral responses are driven by type I interferon (IFN) and are crucial to controlling HSV-1 virulence. Autophagy also plays a role in this neuronal antiviral response, but the mechanism remains obscure. In this study, HSV-1 infection of murine TG neurons triggered unusual clusters of autophagosomes, predominantly in neurons lacking detectable HSV-1 antigen. Treatment of neurons with IFN-β induced a similar response, and cluster formation by infection or IFN treatment was dependent upon an intact IFN-signaling pathway. The autophagic …


The Gras Sensor In Staphylococcus Aureus Mediates Resistance To Host Defense Peptides Differing In Mechanisms Of Action, Siyang Chaili, Ambrose L. L. Cheung, Arnold S. Bayer, Yan Q. Xiong, Alan Waring, Guido Memmi, Niles Donegan Feb 2016

The Gras Sensor In Staphylococcus Aureus Mediates Resistance To Host Defense Peptides Differing In Mechanisms Of Action, Siyang Chaili, Ambrose L. L. Cheung, Arnold S. Bayer, Yan Q. Xiong, Alan Waring, Guido Memmi, Niles Donegan

Dartmouth Scholarship

Staphylococcus aureus uses the two-component regulatory system GraRS to sense and respond to host defense peptides (HDPs). However, the mechanistic impact of GraS or its extracellular sensing loop (EL) on HDP resistance is essentially unexplored. Strains with null mutations in the GraS holoprotein (ΔgraS) or its EL (ΔEL) were compared for mechanisms of resistance to HDPs of relevant immune sources: neutrophil α-defensin (human neutrophil peptide 1 [hNP-1]), cutaneous β-defensin (human β-defensin 2 [hBD-2]), or the platelet kinocidin congener RP-1. Actions studied by flow cytometry included energetics (ENR); membrane permeabilization (PRM); annexin V binding (ANX), and cell death protease activation (CDP). …


The 40-Residue Insertion In Vibrio Cholerae Fadr Facilitates Binding Of An Additional Fatty Acyl-Coa Ligand, Wei Shi, Gabriela Kovacikova, Wei Lin, Ronald. K. Taylor, Karen Skorupski, F. Jon Kull Jan 2016

The 40-Residue Insertion In Vibrio Cholerae Fadr Facilitates Binding Of An Additional Fatty Acyl-Coa Ligand, Wei Shi, Gabriela Kovacikova, Wei Lin, Ronald. K. Taylor, Karen Skorupski, F. Jon Kull

Dartmouth Scholarship

FadR is a master regulator of fatty acid metabolism and influences virulence in certain members of Vibrionaceae. Among FadR homologues of the GntR family, the Vibrionaceae protein is unusual in that it contains a C-terminal 40-residue insertion. Here we report the structure of Vibrio cholerae FadR (VcFadR) alone, bound to DNA, and in the presence of a ligand, oleoyl-CoA. Whereas Escherichia coli FadR (EcFadR) contains only one acyl-CoA-binding site in each monomer, crystallographic and calorimetric data indicate that VcFadR has two. One of the binding sites resembles that of EcFadR, whereas the other, comprised residues from the insertion, has not …


Characterization Of Rna Helicase Csha And Its Role In Protecting Mrnas And Small Rnas Of Staphylococcus Aureus Strain Newman, Samin Kim, Anna-Rita Corvaglia, Stefano Léo, Ambrose Cheung, Patrice Francois Jan 2016

Characterization Of Rna Helicase Csha And Its Role In Protecting Mrnas And Small Rnas Of Staphylococcus Aureus Strain Newman, Samin Kim, Anna-Rita Corvaglia, Stefano Léo, Ambrose Cheung, Patrice Francois

Dartmouth Scholarship

The toxin MazFsa in Staphylococcus aureus is a sequence-specific endoribonuclease that cleaves the majority of the mRNAs in vivo but spares many essential mRNAs (e.g., secY mRNA) and, surprisingly, an mRNA encoding a regulatory protein (i.e., sarA mRNA). We hypothesize that some mRNAs may be protected by RNA-binding protein(s) from degradation by MazFsa. Using heparin-Sepharose-enriched fractions that hybridized to sarA mRNA on Northwestern blots, we identified among multiple proteins the DEAD box RNA helicase CshA (NWMN_1985 or SA1885) by mass spectroscopy. Purified CshA exhibits typical RNA helicase activities, as exemplified by RNA-dependent ATPase activity and unwinding of …


Iron-Dependent Gene Expression In Actinomyces Oris, Matthew P. Mulé, David Giacalone, Kayla Lawlor, Alexa Golden, Caroline Cook, Thomas Lott, Elizabeth Aksten, George A. O'Toole, Lori J. Bergeron Dec 2015

Iron-Dependent Gene Expression In Actinomyces Oris, Matthew P. Mulé, David Giacalone, Kayla Lawlor, Alexa Golden, Caroline Cook, Thomas Lott, Elizabeth Aksten, George A. O'Toole, Lori J. Bergeron

Dartmouth Scholarship

Actinomyces oris is a Gram-positive bacterium that has been associated with healthy and diseased sites in the human oral cavity. Most pathogenic bacteria require iron to survive, and in order to acquire iron in the relatively iron-scarce oral cavity A. oris has been shown to produce iron-binding molecules known as siderophores. The genes encoding these siderophores and transporters are thought to be regulated by the amount of iron in the growth medium and by the metal-dependent repressor, AmdR, which we showed previously binds to the promoter of proposed iron-regulated genes.


Characterization Of The Paracoccidioides Hypoxia Response Reveals New Insights Into Pathogenesis Mechanisms Of This Important Human Pathogenic Fungus, Patrícia De Sousa Lima, Dawoon Chung, Alexandre Melo Bailão, Robert A. Cramer, Célia Maria De Almeida Soares Dec 2015

Characterization Of The Paracoccidioides Hypoxia Response Reveals New Insights Into Pathogenesis Mechanisms Of This Important Human Pathogenic Fungus, Patrícia De Sousa Lima, Dawoon Chung, Alexandre Melo Bailão, Robert A. Cramer, Célia Maria De Almeida Soares

Dartmouth Scholarship

Background: Hypoxic microenvironments are generated during fungal infection. It has been described that to survive in the human host, fungi must also tolerate and overcome in vivo microenvironmental stress conditions including low oxygen tension; however nothing is known how Paracoccidioides species respond to hypoxia. The genus Paracoccidioides comprises human thermal dimorphic fungi and are causative agents of paracoccidioidomycosis (PCM), an important mycosis in Latin America.


Tobramycin-Treated Pseudomonas Aeruginosa Pa14 Enhances Streptococcus Constellatus 7155 Biofilm Formation In A Cystic Fibrosis Model System, Katherine E. E. Price, Amanda A. Naimie, Edward F. Griffin, Charles Bay, George A. O'Toole Oct 2015

Tobramycin-Treated Pseudomonas Aeruginosa Pa14 Enhances Streptococcus Constellatus 7155 Biofilm Formation In A Cystic Fibrosis Model System, Katherine E. E. Price, Amanda A. Naimie, Edward F. Griffin, Charles Bay, George A. O'Toole

Dartmouth Scholarship

Cystic fibrosis (CF) is a human genetic disorder which results in a lung environment that is highly conducive to chronic microbial infection. Over the past decade, deep-sequencing studies have demonstrated that the CF lung can harbor a highly diverse polymicrobial community. We expanded our existing in vitro model of Pseudomonas aeruginosa biofilm formation on CF-derived airway cells to include this broader set of CF airway colonizers to investigate their contributions to CF lung disease, particularly as they relate to the antibiotic response of the population. Using this system, we identified an interspecies interaction between P. aeruginosa, a bacterium associated with …


Parasite Manipulation Of The Invariant Chain And The Peptide Editor H2-Dm Affects Major Histocompatibility Complex Class Ii Antigen Presentation During Toxoplasma Gondii Infection, Louis-Philippe Leroux, Manami Nishi, Sandy El-Hage, Barbara A. Fox, David I Bzik, Florence Dzierszinsk Oct 2015

Parasite Manipulation Of The Invariant Chain And The Peptide Editor H2-Dm Affects Major Histocompatibility Complex Class Ii Antigen Presentation During Toxoplasma Gondii Infection, Louis-Philippe Leroux, Manami Nishi, Sandy El-Hage, Barbara A. Fox, David I Bzik, Florence Dzierszinsk

Dartmouth Scholarship

Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4(+) T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms inhibiting MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the parasite modulates the expression of key components of the MHC-II antigen presentation pathway, …


Role Of The Dna Sensor Sting In Protection From Lethal Infection Following Corneal And Intracerebral Challenge With Herpes Simplex Virus 1, Zachary M. Parker, Aisling A. Murphy, David. A. Leib Aug 2015

Role Of The Dna Sensor Sting In Protection From Lethal Infection Following Corneal And Intracerebral Challenge With Herpes Simplex Virus 1, Zachary M. Parker, Aisling A. Murphy, David. A. Leib

Dartmouth Scholarship

STING is a protein in the cytosolic DNA and cyclic dinucleotide sensor pathway that is critical for the initiation of innate responses to infection by various pathogens. Consistent with this, herpes simplex virus 1 (HSV-1) causes invariable and rapid lethality in STING-deficient (STING(-/-)) mice following intravenous (i.v.) infection. In this study, using real-time bioluminescence imaging and virological assays, as expected, we demonstrated that STING(-/-) mice support greater replication and spread in ocular tissues and the nervous system. In contrast, they did not succumb to challenge via the corneal route even with high titers of a virus that was routinely lethal …


Selective Involvement Of The Checkpoint Regulator Vista In Suppression Of B-Cell, But Not T-Cell, Responsiveness By Monocytic Myeloid-Derived Suppressor Cells From Mice Infected With An Immunodeficiency-Causing Retrovirus, Kathy A. Green, Li Wang, Randolph J. Noelle, William R. Green Jul 2015

Selective Involvement Of The Checkpoint Regulator Vista In Suppression Of B-Cell, But Not T-Cell, Responsiveness By Monocytic Myeloid-Derived Suppressor Cells From Mice Infected With An Immunodeficiency-Causing Retrovirus, Kathy A. Green, Li Wang, Randolph J. Noelle, William R. Green

Dartmouth Scholarship

Inhibition of T-cell responses in tumor microenvironments by myeloid-derived suppressor cells (MDSCs) is widely accepted. We demonstrated augmentation of monocytic MDSCs whose suppression of not only T-cell, but also B-cell, responsiveness paralleled the immunodeficiency during LP-BM5 retrovirus infection. MDSCs inhibited T cells by inducible nitric oxide synthase (iNOS)/nitric oxide (NO), but uniquely, inhibition of B cells was ~50% dependent each on iNOS/NO and the MDSC-expressed negative-checkpoint regulator VISTA. Blockade with a combination of iNOS/NO and VISTA caused additive or synergistic abrogation of MDSC-mediated suppression of B-cell responsiveness.


A Self-Lysis Pathway That Enhances The Virulence Of A Pathogenic Bacterium, Kirsty A. Mcfarland, Emily L. Dolben, Michele Leroux, Tracy K. Kambara, Kathryn Ramsey, Robin Kirkpatrick, Joseph Mougous, Deborah Hogan, Simon Dove Jul 2015

A Self-Lysis Pathway That Enhances The Virulence Of A Pathogenic Bacterium, Kirsty A. Mcfarland, Emily L. Dolben, Michele Leroux, Tracy K. Kambara, Kathryn Ramsey, Robin Kirkpatrick, Joseph Mougous, Deborah Hogan, Simon Dove

Dartmouth Scholarship

In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of …