Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Diseases

Dartmouth College

Rna

Articles 1 - 9 of 9

Full-Text Articles in Medical Sciences

Triterpenoid Modulation Of Il-17 And Nrf-2 Expression Ameliorates Neuroinflammation And Promotes Remyelination In Autoimmune Encephalomyelitis, Tej K. Pareek, Abdelmadjid Belkadi, Sashi Kesavapany, Anita Zaremba, Sook L. Loh, Lianhua Bai, Mark L. Cohen, Colin Meyer, Karen T. Liby, Robert H. Miller, Michael B. Sporn, John J. Letterio Dec 2011

Triterpenoid Modulation Of Il-17 And Nrf-2 Expression Ameliorates Neuroinflammation And Promotes Remyelination In Autoimmune Encephalomyelitis, Tej K. Pareek, Abdelmadjid Belkadi, Sashi Kesavapany, Anita Zaremba, Sook L. Loh, Lianhua Bai, Mark L. Cohen, Colin Meyer, Karen T. Liby, Robert H. Miller, Michael B. Sporn, John J. Letterio

Dartmouth Scholarship

Inflammatory cytokines and endogenous anti-oxidants are variables affecting disease progression in multiple sclerosis (MS). Here we demonstrate the dual capacity of triterpenoids to simultaneously repress production of IL-17 and other pro-inflammatory mediators while exerting neuroprotective effects directly through Nrf2-dependent induction of anti-oxidant genes. Derivatives of the natural triterpene oleanolic acid, namely CDDO-trifluoroethyl-amide (CDDO-TFEA), completely suppressed disease in a murine model of MS, experimental autoimmune encephalomyelitis (EAE), by inhibiting Th1 and Th17 mRNA and cytokine production. Encephalitogenic T cells recovered from treated mice were hypo-responsive to myelin antigen and failed to adoptively transfer the disease. Microarray analyses showed significant suppression of …


Variations In Mre11/Rad50/Nbs1 Status And Dna Damage-Induced S-Phase Arrest In The Cell Lines Of The Nci60 Panel, Kristen M. K. Garner, Alan Eastman May 2011

Variations In Mre11/Rad50/Nbs1 Status And Dna Damage-Induced S-Phase Arrest In The Cell Lines Of The Nci60 Panel, Kristen M. K. Garner, Alan Eastman

Dartmouth Scholarship

The Mre11/Rad50/Nbs1 (MRN) complex is a regulator of cell cycle checkpoints and DNA repair. Defects in MRN can lead to defective S-phase arrest when cells are damaged. Such defects may elicit sensitivity to selected drugs providing a chemical synthetic lethal interaction that could be used to target therapy to tumors with these defects. The goal of this study was to identify these defects in the NCI60 panel of cell lines and identify compounds that might elicit selective cytotoxicity.


Selective Repression Of Retinoic Acid Target Genes By Rip140 During Induced Tumor Cell Differentiation Of Pluripotent Human Embryonal Carcinoma Cells, Kelly C. Heim, Kristina A. White, Dexin Deng, Craig R. Tomlinson, Jason Moore, Sarah Freemantle, Michael Spinella Sep 2007

Selective Repression Of Retinoic Acid Target Genes By Rip140 During Induced Tumor Cell Differentiation Of Pluripotent Human Embryonal Carcinoma Cells, Kelly C. Heim, Kristina A. White, Dexin Deng, Craig R. Tomlinson, Jason Moore, Sarah Freemantle, Michael Spinella

Dartmouth Scholarship

The use of retinoids as anti-cancer agents has been limited due to resistance and low efficacy. The dynamics of nuclear receptor coregulation are incompletely understood. Cell-and context-specific activities of nuclear receptors may be in part due to distinct coregulator complexes recruited to distinct subsets of target genes. RIP140 (also called NRIP1) is a ligand-dependent corepressor that is inducible with retinoic acid (RA). We had previously shown that RIP140 limits RA induced tumor cell differentiation of embryonal carcinoma; the pluriopotent stem cells of testicular germ cell tumors. This implies that RIP140 represses key genes required for RA-mediated tumor cell differentiation. Identification …


Transgenic Cyclin E Triggers Dysplasia And Multiple Pulmonary Adenocarcinomas, Yan Ma, Steven Fiering, Candice Black, Xi Liu, Ziqiang Yuan, Vincent A. Memoli, David J. Robbins, Heather A. Bentley, Gregory J. Tsongalis, Eugene Demidenko, Sarah J. Freemantle, Ethan Dmitrovsky Mar 2007

Transgenic Cyclin E Triggers Dysplasia And Multiple Pulmonary Adenocarcinomas, Yan Ma, Steven Fiering, Candice Black, Xi Liu, Ziqiang Yuan, Vincent A. Memoli, David J. Robbins, Heather A. Bentley, Gregory J. Tsongalis, Eugene Demidenko, Sarah J. Freemantle, Ethan Dmitrovsky

Dartmouth Scholarship

Cyclin E is a critical G(1)-S cell cycle regulator aberrantly expressed in bronchial premalignancy and lung cancer. Cyclin E expression negatively affects lung cancer prognosis. Its role in lung carcinogenesis was explored. Retroviral cyclin E transduction promoted pulmonary epithelial cell growth, and small interfering RNA targeting of cyclin E repressed this growth. Murine transgenic lines were engineered to mimic aberrant cyclin E expression in the lung. Wild-type and proteasome degradation-resistant human cyclin E transgenic lines were independently driven by the human surfactant C (SP-C) promoter. Chromosome instability (CIN), pulmonary dysplasia, sonic hedgehog (Shh) pathway activation, adenocarcinomas, and metastases occurred. Notably, …


Innate Antiviral Response Targets Hiv-1 Release By The Induction Of Ubiquitin-Like Protein Isg15, Atsushi Okumura, Gengshi Lu, Ian Pitha-Rowe, Paula M. Pitha Jan 2006

Innate Antiviral Response Targets Hiv-1 Release By The Induction Of Ubiquitin-Like Protein Isg15, Atsushi Okumura, Gengshi Lu, Ian Pitha-Rowe, Paula M. Pitha

Dartmouth Scholarship

The goal of this study was to elucidate the molecular mechanism by which type I IFN inhibits assembly and release of HIV-1 virions. Our study revealed that the IFN-induced ubiquitin-like protein ISG15 mimics the IFN effect and inhibits release of HIV-1 virions without having any effect on the synthesis of HIV-1 proteins in the cells. ISG15 expression specifically inhibited ubiquitination of Gag and Tsg101 and disrupted the interaction of the Gag L domain with Tsg101, but conjugation of ISG15 to Gag or Tsg101 was not detected. The inhibition of Gag-Tsg101 interaction was also detected in HIV-1 infected, IFN-treated cells. Elimination …


Ube1l Is A Retinoid Target That Triggers Pml/Rarα Degradation And Apoptosis In Acute Promyelocytic Leukemia, Sutisak Kitareewan, Ian Pitha-Rowe, David Sekula, Christopher H. Lowrey, Michael J. Nemeth, Todd R. Golub, Sarah J. Freemantle, Ethan Dmitrovsky Mar 2002

Ube1l Is A Retinoid Target That Triggers Pml/Rarα Degradation And Apoptosis In Acute Promyelocytic Leukemia, Sutisak Kitareewan, Ian Pitha-Rowe, David Sekula, Christopher H. Lowrey, Michael J. Nemeth, Todd R. Golub, Sarah J. Freemantle, Ethan Dmitrovsky

Dartmouth Scholarship

All-trans-retinoic acid (RA) treatment induces remissions in acute promyelocytic leukemia (APL) cases expressing the t(15;17) product, promyelocytic leukemia (PML)/RA receptor α (RARα). Microarray analyses previously revealed induction of UBE1L (ubiquitin-activating enzyme E1-like) after RA treatment of NB4 APL cells. We report here that this occurs within 3 h in RA-sensitive but not RA-resistant APL cells, implicating UBE1L as a direct retinoid target. A 1.3-kb fragment of the UBE1L promoter was capable of mediating transcriptional response to RA in a retinoid receptor-selective manner. PML/RARα, a repressor of RA target genes, abolished this UBE1L promoter activity. A hallmark of …


Marek's Disease Virus (Mdv) Encodes An Interleukin-8 Homolog (Vil-8): Characterization Of The Vil-8 Protein And A Vil-8 Deletion Mutant Mdv, Mark S. Parcells, Su-Fang Lin, Robert L. Dienglewicz, Vladimir Majerciak, Dan R. Robinson, Hua-Chien Chen, Zining Wu, George R. Dubyak, Peter Brunovskis, Henry D. Hunt Jun 2001

Marek's Disease Virus (Mdv) Encodes An Interleukin-8 Homolog (Vil-8): Characterization Of The Vil-8 Protein And A Vil-8 Deletion Mutant Mdv, Mark S. Parcells, Su-Fang Lin, Robert L. Dienglewicz, Vladimir Majerciak, Dan R. Robinson, Hua-Chien Chen, Zining Wu, George R. Dubyak, Peter Brunovskis, Henry D. Hunt

Dartmouth Scholarship

Chemokines induce chemotaxis, cell migration, and inflammatory responses. We report the identification of an interleukin-8 (IL-8) homolog, termed vIL-8, encoded within the genome of Marek's disease virus (MDV). The 134-amino-acid vIL-8 shares closest homology to mammalian and avian IL-8, molecules representing the prototype CXC chemokine. The gene for vIL-8 consists of three exons which map to the BamHI-L fragment within the repeats flanking the unique long region of the MDV genome. A 0.7-kb transcript encoding vIL-8 was detected in an n-butyrate-treated, MDV-transformed T-lymphoblastoid cell line, MSB-1. This induction is essentially abolished by cycloheximide and herpesvirus DNA polymerase inhibitor phosphonoacetate, indicating …


Patterns Of Polyadenylation Site Selection In Gene Constructs Containing Multiple Polyadenylation Signals., Roger Denome, Charles Cole Nov 1988

Patterns Of Polyadenylation Site Selection In Gene Constructs Containing Multiple Polyadenylation Signals., Roger Denome, Charles Cole

Dartmouth Scholarship

We have constructed a series of plasmids containing multiple polyadenylation signals downstream of the herpes simplex virus type 1 (HSV) thymidine kinase (tk)-coding region. The signals used were from the simian virus 40 (SV40) late gene, the HSV tk gene, and an AATAAA-containing segment of the SV40 early region. This last fragment signals polyadenylation poorly in our constructs and not at all during SV40 infection. All plasmids contained the SV40 origin of replication. Plasmids were transfected into Cos-1 cells; after 48 h, cytoplasmic RNA was isolated and the quantity and 3'-end structure of tk mRNAs was analyzed by using S1 …


Fine-Structure Analysis Of The Processing And Polyadenylation Region Of The Herpes Simplex Virus Type 1 Thymidine Kinase Gene By Using Linker Scanning, Internal Deletion, And Insertion Mutations., Fang Zhang, Roger M. Denome, Charles N. Cole Dec 1986

Fine-Structure Analysis Of The Processing And Polyadenylation Region Of The Herpes Simplex Virus Type 1 Thymidine Kinase Gene By Using Linker Scanning, Internal Deletion, And Insertion Mutations., Fang Zhang, Roger M. Denome, Charles N. Cole

Dartmouth Scholarship

Most eucaryotic mRNAs are polyadenylated. In higher eucaryotes, the sequence AATAAA is located 7 to 30 base pairs (bp) upstream from the site of processing and polyadenylation and is a critical part of the signal for processing and polyadenylation. Efficient cleavage and polyadenylation also require sequences downstream of polyadenylation sites. The herpes simplex virus type 1 thymidine kinase (tk) gene contains two copies of the AATAAA hexanucleotide and a GT box (18 of 19 consecutive residues are G or T) previously shown to be required for efficient processing and polyadenylation of tk mRNA (C. N. Cole and T. P. Stacy, …