Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Sciences

The Effects Of Hydrostatic Pressure On Early Endothelial Tubulogenic Processes, Ryan M. Underwood Jan 2013

The Effects Of Hydrostatic Pressure On Early Endothelial Tubulogenic Processes, Ryan M. Underwood

Theses and Dissertations--Biomedical Engineering

The effects of mechanical forces on endothelial cell function and behavior are well documented, but have not been fully characterized. Specifically, fluid pressure has been shown to elicit physical and chemical responses known to be involved in the initiation and progression of endothelial cell-mediated vascularization. Central to the process of vascularization is the formation of tube-like structures. This process—tubulogenesis—is essential to both the physiological and pathological growth of tissues. Given the known effects of pressure on endothelial cells and its ubiquitous presence in the vasculature, we investigated pressure as a magnitude-dependent parameter for the regulation of endothelial tubulogenic activity. To …


Defining The Role Of Reactive Oxygen Species, Nitric Oxide, And Sphingolipid Signaling In Tumor Necrosis Factor - Induced Skeletal Muscle Weakness, Shawn Stasko Jan 2013

Defining The Role Of Reactive Oxygen Species, Nitric Oxide, And Sphingolipid Signaling In Tumor Necrosis Factor - Induced Skeletal Muscle Weakness, Shawn Stasko

Theses and Dissertations--Physiology

In many chronic inflammatory diseases, patients suffer from skeletal muscle weakness, exacerbating their symptoms. Serum levels of tumor necrosis factor-alpha (TNF) and sphingomyelinase are increased, suggesting their possible role in the progression of this weakness. This dissertation focuses on the role that reactive oxygen species (ROS) and nitric oxide (NO) play in mediating TNF-induced skeletal muscle weakness and to what extent sphingolipid signaling mediates cellular response to TNF.

The first aim of this work was to identify which endogenous oxidant species stimulated by TNF contributes to skeletal muscle weakness. In C57BL/6 mice (n=38), intraperitoneal injection of TNF elicited a 25% …