Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medical Sciences

Determining The Genetic Control Of Neural Tube Malformation Through Genetic Interactions With Idgf3, Elli N. Fox May 2020

Determining The Genetic Control Of Neural Tube Malformation Through Genetic Interactions With Idgf3, Elli N. Fox

Honors Projects

Genetic mutations disrupting human neural tube formation can lead to birth defects such as spina bifida and anencephaly. Defects can result in lack of neural tube closure in either the caudal (spina bifida) or cranial (anencephaly) regions. Little is known about the genes that cause these malformations. Researchers have been using the model organism Drosophila melanogaster in an attempt to determine genes responsible for neural tube malformations. Recently, an ortholog of human chitin-like protein, imaginal disc growth factor 3 (Idgf3), has been identified as important in the proper formation of Drosophila egg dorsal appendages. However, the molecular mechanism responsible for …


In Vivo Structure-Function Analysis Of Drosophila Robo1, An Axon Guidance Receptor Critical For Midline Repulsive Signaling In The Embryonic Central Nervous System, Haley Brown Jan 2018

In Vivo Structure-Function Analysis Of Drosophila Robo1, An Axon Guidance Receptor Critical For Midline Repulsive Signaling In The Embryonic Central Nervous System, Haley Brown

Graduate Theses and Dissertations

The repellant ligand Slit and its Roundabout (Robo) family receptors regulate many aspects of axon guidance in bilaterians, including midline crossing of axons during development of the embryonic CNS. Slit proteins are produced by midline cells and signal through Robo receptors expressed on the surface of axonal growth cones to repel axons from the midline. Disruption of Slit-Robo signaling causes ectopic midline crossing phenotypes in the CNS of a broad range of animals, including insects and vertebrates.

Drosophila Robo1 has a conserved ectodomain structure of five immunoglobulin-like (Ig) domains plus three fibronectin (FN) repeats. By utilizing a genomic rescue construct …


Chmp1 Negatively Regulates Epidermal Growth Factor Signaling In The Drosophila Wing, Meagan Elisabeth Valentine Jan 2014

Chmp1 Negatively Regulates Epidermal Growth Factor Signaling In The Drosophila Wing, Meagan Elisabeth Valentine

Theses, Dissertations and Capstones

A critical step in cellular signaling through transmembrane receptors is the down-regulation of activated receptors through the multivesicular body (MVB) pathway to the lysosome. MVB generation is mediated by the highly conserved ESCRT (0, I, II, and III) protein complexes. Though the ESCRT-III complex provides the core function of the ESCRT machinery, it is the least characterized of the ESCRT complexes. The Chmp1 protein is an ESCRT-III component and a putative tumor suppressor that has been linked to pancreatic and renal cancers in humans. However, published data on Chmp1 activity are conflicting and its role during tissue development is not …