Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Medical Sciences

Analyzing Pseudomonas Aeruginosa With Bacteriophage Tags Using Photoacoustic Flow Cytometry, Jennifer C. Schinke Aug 2023

Analyzing Pseudomonas Aeruginosa With Bacteriophage Tags Using Photoacoustic Flow Cytometry, Jennifer C. Schinke

Electronic Theses and Dissertations

The number of daily bacterial infections is climbing and the CDC explains that this is due to the antibiotic-resistant threat in the United States. Finding a faster way of bacterial identification is necessary as it currently takes 1-4 days for a medical lab to culture and identify bacteria. Photoacoustic flow cytometry (PAFC) can be used as an alternative method resulting in swift identification within an hour (Edgar, 2019). Pseudomonas aeruginosa, cell line PA01, will be coated in up to a few hundred red dyed phages making it detectible by the photoacoustic flow cytometry system. Bacteriophages (phages) are viruses that …


Primary Cilia Of The Cardiac Neural Crest & Hedgehog-Mediated Mechanisms Of Congenital Heart Disease, Lindsey A. Fitzsimons May 2022

Primary Cilia Of The Cardiac Neural Crest & Hedgehog-Mediated Mechanisms Of Congenital Heart Disease, Lindsey A. Fitzsimons

Electronic Theses and Dissertations

Elimination of primary cilia in cardiac neural crest cell (CNCC) progenitors is hypothesized to cause a variety of congenital heart defects (CHDs), including atrioventricular septal defects, and malformations of the developing cardiac outflow tract. We present an in vivo model of CHD resulting from the conditional elimination of primary cilia from CNCC using multiple, Wnt1:Cre-loxP, neural crest-specific systems, targeting two distinctive, but critical, primary cilia structural genes: Intraflagellar transport protein 88 (Ift88) or kinesin family member 3A (Kif3a). CNCC loss of primary cilia leads to widespread CHD, where homozygous mutant embryos (MUT) display a variety of outflow tract malformations, septation …


Tissue-Resident Myeloid-Derived Suppressor Cells Modulate Immune Homeostasis In Healthy Adipose., Katlin Brooke Stivers Aug 2020

Tissue-Resident Myeloid-Derived Suppressor Cells Modulate Immune Homeostasis In Healthy Adipose., Katlin Brooke Stivers

Electronic Theses and Dissertations

Our goal with this study was to gain insight into the homeostatic immune cell network in healthy adipose tissue. Specifically, we sought to determine if the immature myeloid cells found in healthy and inflamed adipose were, in fact, tissue-resident myeloid-derived suppressor cells (MDSCs). Using various in vitro and in vivo methods, we have uncovered a population of CD11bHi Ly6CHi Ly6G- MDSCs resident in healthy adipose tissue. To the best of our knowledge this is the first time that these cells have been investigated and described in healthy adipose tissue. Systemic MDSC depletion lead to the accumulation of …


The Effect Of Wild Blueberry Bioactives On Endothelial Cell Migration And Angiogenesis: An In Vitro Mechanistic, Genomic And Proteomic Approach, Panagiotis Tsakiroglou Sep 2018

The Effect Of Wild Blueberry Bioactives On Endothelial Cell Migration And Angiogenesis: An In Vitro Mechanistic, Genomic And Proteomic Approach, Panagiotis Tsakiroglou

Electronic Theses and Dissertations

The goal of this study is to investigate the effects of wild blueberry fractions (Anthocyanins and Phenolic acids) on vascular function and physiology. More specifically the potential effects of the above fractions and their combination in physiological concentrations on endothelial cell migration, angiogenesis, gene expression and proteins synthesis of markers related to the above processes. The objectives are to study whether anthocyanins, phenolic acids and their combinations (ACNs:PAs) affect: a) cell proliferation, b) speed of endothelial cell migration, c) angiogenesis, d) gene expression of genes critical for cell migration and angiogenesis such as RAC1, RHOA, AKT1, eNOS and VEGF and …


Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle Aug 2018

Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle

Electronic Theses and Dissertations

Background: Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic metabolizing enzyme found in almost all tissues. NAT1 can additionally hydrolyze acetyl-coenzyme A (acetyl-CoA) in the absence of an arylamine substrate. NAT1 expression varies inter-individually and is elevated in several cancers including estrogen receptor positive (ER+) breast cancers. Additionally, multiple studies have shown the knockdown of NAT1, by both small molecule inhibition and siRNA methods, in breast cancer cells leads to decreased invasive ability and proliferation and decreased anchorage-independent colony formation. However, the exact mechanism by which NAT1 expression affects cancer risk and progression remains unclear. Additionally, consequences …


Microrna-186 And Metastatic Prostate Cancer., Dominique Zilpha Jones May 2016

Microrna-186 And Metastatic Prostate Cancer., Dominique Zilpha Jones

Electronic Theses and Dissertations

MicroRNA (miR) dysregulation alters cancer-associated gene expression, which contributes to cancer pathogenesis. For example, miR-186 over expression lead to enhanced proliferation and migration in pancreatic cancer cell models. However, the role of miR-186 in prostate cancer (PCa) remains controversial. Previously, miR-186-5p was up-regulated in PCa patient serum (stage III/IV) compared to controls. Furthermore, miR-186-5p was up-regulated in metastatic PCa (PC-3, MDA PCa 2b, LNCaP) relative to normal prostate epithelial cells (RWPE1). We hypothesized miR-186 inhibition will reduce aggressive PCa using metastatic cell models. To test this, we evaluated whether miR-186-5p inhibition would reduce aggressive PCa behavior and overexpression induce malignant …


Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton May 2016

Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton

Electronic Theses and Dissertations

Endogenous and exogenous agents that can damage DNA are a constant threat to genome stability in all living cells. In response, cells have evolved an array of mechanisms to repair DNA damage or to eliminate the cells damaged beyond repair. One of these mechanisms is nucleotide excision repair (NER) which is the major repair pathway responsible for removing a wide variety of bulky DNA lesions. Deficiency, or mutation, in one or several of the NER repair proteins is responsible for many diseases, including cancer. Prokaryotic NER involves only three proteins to recognize and incise a damaged site, while eukaryotic NER …


Transcriptional Alterations During Mammary Tumor Progression In Mice And Humans, Karen Fancher Jan 2008

Transcriptional Alterations During Mammary Tumor Progression In Mice And Humans, Karen Fancher

Electronic Theses and Dissertations

Family history, reproductive factors, hormonal exposures, and subjective immunihistochemical evaluations of in situ lesions, and to a lesser extent age, remain the best clinical predictors of an individual's risk of developing breast cancer. Identification of early markers predictive of impending invasive breast cancer from in situ carcinoma is a long-term goal. The latent mammary cancer transgenic mouse model of human breast cancer, C57BL/6JTg(WapTag)1Knw (Waptag1), develops characteristic stages of tumorigenesis in a highly predictable manner: atypical hyperplasia advances to ductal carcinoma in situ (DCIS), which progresses to papillary adenocarcinomas and/or solid, invasive tumors. Microarray analyses of whole mammary glands and tumors …