Open Access. Powered by Scholars. Published by Universities.®

Diseases Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Diseases

Nfatc2 Modulates Microglial Activation In The Aβpp/Ps1 Mouse Model Of Alzheimer's Disease, Gunjan D. Manocha, Atreyi Ghatak, Kendra L. Puig, Susan D. Kraner, Christopher M. Norris, Colin K. Combs Jun 2017

Nfatc2 Modulates Microglial Activation In The Aβpp/Ps1 Mouse Model Of Alzheimer's Disease, Gunjan D. Manocha, Atreyi Ghatak, Kendra L. Puig, Susan D. Kraner, Christopher M. Norris, Colin K. Combs

Pharmacology and Nutritional Sciences Faculty Publications

Alzheimer’s disease (AD) brains are characterized by fibrillar amyloid-β (Aβ) peptide containing plaques and associated reactive microglia. The proinflammatory phenotype of the microglia suggests that they may negatively affect disease course and contribute to behavioral decline. This hypothesis predicts that attenuating microglial activation may provide benefit against disease. Prior work from our laboratory and others has characterized a role for the transcription factor, nuclear factor of activated T cells (NFAT), in regulating microglial phenotype in response to different stimuli, including Aβ peptide. We observed that the NFATc2 isoform was the most highly expressed in murine microglia cultures, and inhibition or …


Transcriptional Signatures Of Brain Aging And Alzheimer's Disease: What Are Our Rodent Models Telling Us?, Kendra E. Hargis, Eric M. Blalock Mar 2017

Transcriptional Signatures Of Brain Aging And Alzheimer's Disease: What Are Our Rodent Models Telling Us?, Kendra E. Hargis, Eric M. Blalock

Pharmacology and Nutritional Sciences Faculty Publications

Aging is the biggest risk factor for idiopathic Alzheimer’s disease (AD). Recently, the National Institutes of Health released AD research recommendations that include: appreciating normal brain aging, expanding data-driven research, using open-access resources, and evaluating experimental reproducibility. Transcriptome data sets for aging and AD in humans and animal models are available in NIH-curated, publically accessible databases. However, little work has been done to test for concordance among those molecular signatures. Here, we test the hypothesis that brain transcriptional profiles from animal models recapitulate those observed in the human condition. Raw transcriptional profile data from twenty-nine studies were analyzed to produce …


Developmental Origins Of Cardiovascular Disease: Impact Of Early Life Stress In Humans And Rodents, Margaret O. Murphy, Dianne M. Cohn, Analia S. Loria Mar 2017

Developmental Origins Of Cardiovascular Disease: Impact Of Early Life Stress In Humans And Rodents, Margaret O. Murphy, Dianne M. Cohn, Analia S. Loria

Pharmacology and Nutritional Sciences Faculty Publications

The Developmental Origins of Health and Disease (DOHaD) hypothesizes that environmental insults during childhood programs the individual to develop chronic disease in adulthood. Emerging epidemiological data strongly supports that early life stress (ELS) given by the exposure to adverse childhood experiences is regarded as an independent risk factor capable of predicting future risk of cardiovascular disease. Experimental animal models utilizing chronic behavioral stress during postnatal life, specifically maternal separation (MatSep) provides a suitable tool to elucidate molecular mechanisms by which ELS increases the risk to develop cardiovascular disease, including hypertension. The purpose of this review is to highlight current epidemiological …


Calcium's Role As Nuanced Modulator Of Cellular Physiology In The Brain, Hilaree N. Frazier, Shaniya Maimaiti, Katie L. Anderson, Lawrence D. Brewer, John C. Gant, Nada M. Porter, Olivier Thibault Feb 2017

Calcium's Role As Nuanced Modulator Of Cellular Physiology In The Brain, Hilaree N. Frazier, Shaniya Maimaiti, Katie L. Anderson, Lawrence D. Brewer, John C. Gant, Nada M. Porter, Olivier Thibault

Pharmacology and Nutritional Sciences Faculty Publications

Neuroscientists studying normal brain aging, spinal cord injury, Alzheimer’s disease (AD) and other neurodegenerative diseases have focused considerable effort on carefully characterizing intracellular perturbations in calcium dynamics or levels. At the cellular level, calcium is known for controlling life and death and orchestrating most events in between. For many years, intracellular calcium has been recognized as an essential ion associated with nearly all cellular functions from cell growth to degeneration. Often the emphasis is on the negative impact of calcium dysregulation and the typical worse-case-scenario leading inevitably to cell death. However, even high amplitude calcium transients, when executed acutely can …


Translational Models For Vascular Cognitive Impairment: A Review Including Larger Species, Atticus H. Hainsworth, Stuart M. Allan, Johannes Boltze, Catriona Cunningham, Chad Farris, Elizabeth Head, Masafumi Ihara, Jeremy D. Isaacs, Raj N. Kalaria, Saskia A. M. J. Lesnik Oberstein, Mark B. Moss, Björn Nitzsche, Gary A. Rosenberg, Julie W. Rutten, Melita Salkovic-Petrisic, Aron M. Troen Jan 2017

Translational Models For Vascular Cognitive Impairment: A Review Including Larger Species, Atticus H. Hainsworth, Stuart M. Allan, Johannes Boltze, Catriona Cunningham, Chad Farris, Elizabeth Head, Masafumi Ihara, Jeremy D. Isaacs, Raj N. Kalaria, Saskia A. M. J. Lesnik Oberstein, Mark B. Moss, Björn Nitzsche, Gary A. Rosenberg, Julie W. Rutten, Melita Salkovic-Petrisic, Aron M. Troen

Pharmacology and Nutritional Sciences Faculty Publications

Background: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited.

Methods: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, …