Open Access. Powered by Scholars. Published by Universities.®

Diseases Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Diseases

Dna Methylation By Restriction Modification Systems Affects The Global Transcriptome Profile In Borrelia Burgdorferi, Timothey Casselli, Yvonne Tourand, Adam Scheidegger, William K. Arnold, Anna Proulx, Brian Stevenson, Catherine A. Brissette Dec 2018

Dna Methylation By Restriction Modification Systems Affects The Global Transcriptome Profile In Borrelia Burgdorferi, Timothey Casselli, Yvonne Tourand, Adam Scheidegger, William K. Arnold, Anna Proulx, Brian Stevenson, Catherine A. Brissette

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Prokaryote restriction modification (RM) systems serve to protect bacteria from potentially detrimental foreign DNA. Recent evidence suggests that DNA methylation by the methyltransferase (MTase) components of RM systems can also have effects on transcriptome profiles. The type strain of the causative agent of Lyme disease, Borrelia burgdorferi B31, possesses two RM systems with N6-methyladenosine (m6A) MTase activity, which are encoded by the bbe02 gene located on linear plasmid lp25 and bbq67 on lp56. The specific recognition and/or methylation sequences had not been identified for either of these B. burgdorferi MTases, and it was not previously known whether these RM …


Epigenetic Mechanisms Regulating The Functional Effects Of Chronic Alcohol Exposure Of Human Monocyte-Derived Dendritic Cells, Tiyash Parira Nov 2018

Epigenetic Mechanisms Regulating The Functional Effects Of Chronic Alcohol Exposure Of Human Monocyte-Derived Dendritic Cells, Tiyash Parira

FIU Electronic Theses and Dissertations

The effects of alcohol abuse are multi-dimensional since alcohol is widely known to affect both the innate and adaptive immune systems. Recently, epigenetics has come into focus and has been implicated in many diseases as well as substance abuse disorders. Therefore, research efforts of understanding the epigenetic mechanisms underlying substance abuse effects including alcohol abuse have become more predominant.

In our laboratory, we have studied different epigenetic changes induced by alcohol exposure including regulation of histone deacetylases (HDACs), histone quantity, and histone modifications such as acetylation and deacetylation. We have observed differential effects of acute and chronic alcohol exposure in …


Hypermethylation Of Mir21 In Cd4+ T Cells From Patients With Relapsing-Remitting Multiple Sclerosis Associates With Lower Mirna-21 Levels And Concomitant Up-Regulation Of Its Target Genes, Sabrina Ruhrmann, Ewoud Ewing, Eliane Piket, Lara Kular, Julio Cesar Cetrulo Lorenzi, Sunjay Jude Fernandes, Hiromasa Morikawa, Shahin Aeinehband, Sergi Sayols-Baixeras, Stella Aslibekyan, Devin M. Absher, Donna K. Arnett, Jesper Tegner, David Gomez-Cabrero, Fredrik Piehl, Maja Jagodic Sep 2018

Hypermethylation Of Mir21 In Cd4+ T Cells From Patients With Relapsing-Remitting Multiple Sclerosis Associates With Lower Mirna-21 Levels And Concomitant Up-Regulation Of Its Target Genes, Sabrina Ruhrmann, Ewoud Ewing, Eliane Piket, Lara Kular, Julio Cesar Cetrulo Lorenzi, Sunjay Jude Fernandes, Hiromasa Morikawa, Shahin Aeinehband, Sergi Sayols-Baixeras, Stella Aslibekyan, Devin M. Absher, Donna K. Arnett, Jesper Tegner, David Gomez-Cabrero, Fredrik Piehl, Maja Jagodic

Epidemiology and Environmental Health Faculty Publications

Background: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by genetic and environmental factors. DNA methylation, an epigenetic mechanism that controls genome activity, may provide a link between genetic and environmental risk factors.

Objective: We sought to identify DNA methylation changes in CD4+ T cells in patients with relapsing-remitting (RR-MS) and secondary-progressive (SP-MS) disease and healthy controls (HC).

Methods: We performed DNA methylation analysis in CD4+ T cells from RR-MS, SP-MS, and HC and associated identified changes with the nearby risk allele, smoking, age, and gene expression.

Results: We observed significant methylation differences in …


Maternal Engineered Nanomaterial Inhalation During Gestation Alters The Fetal Transcriptome, P.A. Stapleton, Q.A. Hathaway, C.E. Nichols, A.B. Abukabda, M.V. Pinti, D.L. Shepherd, C.R. Mcbride, J. Yi, V.C. Castranova, J.M Hollander, Timothy Robert Nurkiewicz Jan 2018

Maternal Engineered Nanomaterial Inhalation During Gestation Alters The Fetal Transcriptome, P.A. Stapleton, Q.A. Hathaway, C.E. Nichols, A.B. Abukabda, M.V. Pinti, D.L. Shepherd, C.R. Mcbride, J. Yi, V.C. Castranova, J.M Hollander, Timothy Robert Nurkiewicz

Faculty & Staff Scholarship

Background: The integration of engineered nanomaterials (ENM) is well-established and widespread in clinical, commercial, and domestic applications. Cardiovascular dysfunctions have been reported in adult populations after exposure to a variety of ENM. As the diversity of these exposures continues to increase, the fetal ramifications of maternal exposures have yet to be determined. We, and others, have explored the consequences of ENM inhalation during gestation and identified many cardiovascular and metabolic outcomes in the F1 generation. The purpose of these studies was to identify genetic alterations in the F1 generation of Sprague-Dawley rats that result from maternal ENM inhalation during gestation. …