Open Access. Powered by Scholars. Published by Universities.®

Diseases Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Diseases

Engineering Yeast To Evaluate Human Proteins Involved In Selective Rna Packaging During Hiv Particle Production, Ryan M. Bitter Dec 2018

Engineering Yeast To Evaluate Human Proteins Involved In Selective Rna Packaging During Hiv Particle Production, Ryan M. Bitter

Master's Theses

Despite recent advances in antiretroviral therapy, nearly 37 million people continue to live with human immunodeficiency virus (HIV). Basic and applied research on the assembly of HIV could be enhanced by using a genetically tractable organism, such as yeast, rather than mammalian cells. While previous studies showed that expression of the HIV Gag polyprotein in Saccharomyces cerevisiae spheroplasts resulted in the production of virus-like particles (VLPs), many questions regarding the utility of yeast in HIV assembly remain uninvestigated. Here, we report use of S. cerevisiae for both the production of VLPs with selectively packaged RNA and to evaluate the human …


Evaluation Of Endothelial Cell Responses To Elevated Glucose, Gabriella Sugerman Aug 2018

Evaluation Of Endothelial Cell Responses To Elevated Glucose, Gabriella Sugerman

Master's Theses

Developing a tissue-engineered Blood Vessel Mimic (BVM) to represent diabetic macrovascular disease could expedite design of new vascular devices specifically tailored to diabetic patients. In contribution toward this model, this thesis assessed Human Umbilical Vein Endothelial Cell (HUVEC) responses to high glucose conditions. Interleukin 6 (IL-6) and Cluster of Differentiation 36 (CD36) were selected to signify oxidative stress activity, a hallmark of diabetic macrovascular disease. Next, activity of potential reference genes B2M, HPRT1, and ACTB was assessed. All genes were found to exceed acceptable variability, so the E-ΔC T method of data analysis was selected. Next, cellular responses to high …