Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Chemicals and Drugs

Near Infrared Gumbos And Nanogumbos For Biomedical Applications, Mi Chen Jun 2019

Near Infrared Gumbos And Nanogumbos For Biomedical Applications, Mi Chen

LSU Doctoral Dissertations

Recent advances in development of nanomaterials have provided great opportunities for cancer research. In this dissertation, nanoGUMBOS derived from a group of uniform materials based on organic salts (GUMBOS) were investigated for several biomedical applications including chemotherapy, photothermal therapy (PTT), and drug delivery. GUMBOS are solid-phase organic salts consisting of bulky cations and anions. Similar to ionic liquids, GUMBOS display highly tunable properties with counter-ions variation, but with a defined melting point range of 25–250 °C. Nanomaterials derived from GUMBOS, i.e. nanoGUMBOS, display enhanced properties at the nanoscale level. This dissertation focuses on development of near infrared IR780 nanoGUMBOS for …


Development Of A Long-Acting Nanoformulation Of Dolutegravir For Prevention And Treatment Of Hiv-1 Infection, Brady Sillman May 2019

Development Of A Long-Acting Nanoformulation Of Dolutegravir For Prevention And Treatment Of Hiv-1 Infection, Brady Sillman

Theses & Dissertations

Dolutegravir (DTG) is a potent human immunodeficiency virus type 1 (HIV-1) integrase strand-transfer inhibitor (INSTI) with a high barrier to viral drug resistance. However, opportunities to improve its profile abound. These include extending the drug’s apparent half-life, increasing penetrance to “putative” viral reservoirs, and reducing inherent toxicities. These highlight, in part, the need for long-acting, slow effective release antiretroviral therapy (LASER ART) delivery schemes. A long-acting (LA) DTG was made by synthesizing a hydrophobic and lipophilic prodrug encased with poloxamer (P407) surfactant. This modified DTG (MDTG) reduced systemic metabolism and polarity, increased lipophilicity and membrane permeability, improved encapsulation, and formed …