Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Chemicals and Drugs

Glycosaminoglycan Mimetics For The Treatment Of Cancer And Lung Inflammation, Shravan Morla Jan 2019

Glycosaminoglycan Mimetics For The Treatment Of Cancer And Lung Inflammation, Shravan Morla

Theses and Dissertations

Glycosaminoglycans (GAGs) are linear polysaccharides whose disaccharide building blocks consist of an amino sugar and either uronic acid or galactose. They are expressed on virtually all mammalian cells, usually covalently attached to proteins, forming proteoglycans. GAGs are highly negatively charged due to an abundance of sulfate and carboxylic acid groups, and are structurally very diverse, with differences arising from chain length, the type of monomeric units, the linkages between each monomeric unit, the position of sulfate groups, and the degree of sulfation. GAGs are known to interact with a multitude of proteins, impacting diverse physiological and pathological processes. In addition, …


Understanding Structure-Activity Relationship Of Synthetic Cathinones (Bath Salts) Utilizing Methylphenidate, Barkha J. Yadav Jan 2019

Understanding Structure-Activity Relationship Of Synthetic Cathinones (Bath Salts) Utilizing Methylphenidate, Barkha J. Yadav

Theses and Dissertations

Synthetic cathinones are stimulant drugs of abuse that act at monoamine transporters e.g. the dopamine transporter (DAT) as releasing agents or as reuptake inhibitors. More than >150 new synthetic cathinones have emerged on the clandestine market and have attracted considerable attention from the medical and law enforcement communities.

threo-Methylphenidate (tMP) is an FDA approved drug for the treatment of ADHD and narcolepsy, which also acts as a DAT reuptake inhibitor and is widely abused. tMP and synthetic cathinones share some structural similarities and extensive structure-activity relationship (SAR) studies on tMP have been conducted. However, much less is known about the …


Structure-Activity Relationship Studies Of Synthetic Cathinones And Related Agents, Rachel A. Davies Jan 2019

Structure-Activity Relationship Studies Of Synthetic Cathinones And Related Agents, Rachel A. Davies

Theses and Dissertations

Synthetic cathinones and related agents represent an international drug abuse problem, and at the same time an important class of clinically useful compounds. Structure-activity relationship studies are needed to elucidate molecular features underlying the pharmacology of these agents. Illicit methcathinone (i.e., MCAT), the prototype of the synthetic cathinone class, exists as a racemic mixture. Though the differences in potency and target selectivity between the positional and optical isomers of synthetic cathinones and related agents have been demonstrated to have important implications for abuse and therapeutic potential, the two MCAT isomers have never been directly compared at their molecular targets: the …


Design, Synthesis And Pharmacological Characterization Of Potential Mu Opioid Receptor Selective Ligands, Abhishek S. Kulkarni Jan 2019

Design, Synthesis And Pharmacological Characterization Of Potential Mu Opioid Receptor Selective Ligands, Abhishek S. Kulkarni

Theses and Dissertations

Selective Mu Opioid Receptor (MOR) antagonists possess immense potential in the treatment of opioid abuse/addiction. Utilizing the “message-address” concept, our laboratory reported a novel, reversible, non-peptide MOR selective antagonist 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4՛-pyridyl)carboxamido]morphinan (NAP). Molecular modeling studies revealed that the selectivity of NAP for the MOR is because of a π-π stacking interaction of its pyridine ring with the Trp318residue in theMOR. Pharmacological characterization showed that NAP is a P-glycoprotein substrate, thereby limiting its use in the treatment of opioid abuse/addiction. Thus, to modify NAP, we replaced the pyridine ring with its isosteric counterpart thiophene. Isosteric replacement …