Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Chemicals and Drugs

Biological Pathway Involvement In Melanoma Heterogeneity And Drug-Induced Resistance, Sarah V. Pack Aug 2019

Biological Pathway Involvement In Melanoma Heterogeneity And Drug-Induced Resistance, Sarah V. Pack

STAR Program Research Presentations

Tumors develop resistance to numerous drug therapies, and this remains a major obstacle in treating many types of non-surgical cancers. Melanoma provides a good model system for studying drug resistance in cancer due to its high propensity to incur resistance after a significant initial response to a drug. Genes that are highly expressed in melanoma cancer cells have been studied, but in order to further understand the collective function of these highly expressed genes we must analyze gene sets, or pathways. A single gene’s function is rarely independent of other genes, and pathway analysis takes this into account.

Our objective …


Rescuing Acetylcholinesterase From Nerve Agent Inhibition: Protein Dynamics Driven Drug Discovery, Aiyana M. Emigh, Brian Bennion Jan 2013

Rescuing Acetylcholinesterase From Nerve Agent Inhibition: Protein Dynamics Driven Drug Discovery, Aiyana M. Emigh, Brian Bennion

STAR Program Research Presentations

Severe morbidity and mortality consequences result from irreversible inhibition of human acetylcholinesterase by organophosphates (OPs). Oxime-based reactivators are currently the only available treatments but lack efficacy in the central nervous system (CNS) where the most damage occurs. Computational docking and molecular dynamics (MD) simulations reveal complex structural barriers that may reduce oxime efficacy. These results may guide future drug designs of more effective countermeasures.


Characterization Of Amino Acid Residues Integral To Neuronal Binding Of Amyloid Beta Protein In Alzheimer’S Disease, Nicole C. Olson Apr 2011

Characterization Of Amino Acid Residues Integral To Neuronal Binding Of Amyloid Beta Protein In Alzheimer’S Disease, Nicole C. Olson

Chemistry and Biochemistry

Purpose: Alzheimer’s Disease is a neurodegenerative disease resulting from over-production and neuronal accumulation of amyloid-beta proteins (Aβ40/Aβ42). The glycine residue at position 33 and histidine residues at positions 13 and 14 are involved with binding and internalization of these proteins, actions potentially inhibited by substituting or sterically hindering these residues with an antibody specific to positions 2-11 (IgG-4.1). Rat pheochromocytoma (PC12) cells differentiated with nerve growth factor were used as a neuronal model to determine whether substitution and/or antibody block amyloid-beta’s neuronal interactions.

Methods: PC12 cells were incubated with fluorescein-labeled-amyloid-beta-40 (F-Aβ40) or substituted F-Aβ40 derivatives (F-Aβ40-H13,14G, F-Aβ40-H13,14G;G33A), with or without …