Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Chemicals and Drugs

Mechanisms Of Oxidant Generation By Catalase, Diane E. Heck, Michael Shakarjian, Hong-Duck Kim, Jeffrey Laskin, Anna M. Vetrano Aug 2010

Mechanisms Of Oxidant Generation By Catalase, Diane E. Heck, Michael Shakarjian, Hong-Duck Kim, Jeffrey Laskin, Anna M. Vetrano

NYMC Faculty Publications

The enzyme catalase converts solar radiation into reactive oxidant species (ROS). In this study, we report that several bacterial catalases (hydroperoxidases, HP), including Escherichia coli HP-I and HP-II also generate reactive oxidants in response to ultraviolet B light (UVB). HP-I and HP-II are identical except for the presence of NADPH. We found that only one of the catalases, HPI, produces oxidants in response to UVB light, indicating a potential role for the nucleotide in ROS production. This prompts us to speculate that NADPH may act as a cofactor regulating ROS generation by mammalian catalases. Structural analysis of the NADPH domains …


Pompe’S Disease And The Effects Of Alpha-Glucosidase Deficiency, Aaron Richler Jan 2010

Pompe’S Disease And The Effects Of Alpha-Glucosidase Deficiency, Aaron Richler

The Science Journal of the Lander College of Arts and Sciences

The following is an excerpt from the introduction of this article: The energy that the body needs in order to function is obtained from carbohydrates that we get through our diet. These carbohydrates are monosacharides, disaccharides and polysacharides. The polysaccharides and disaccharides are hydrolyzed to monosaccharide’s such glucose (which comprises roughly 80%) fructose and galactose. Most cells convert the fructose and galactose to glucose. The body can use the glucose or store it. If energy is needed, glucose can be oxidized through the many reactions of glycolysis which gives a net production of 2 ATP and 2 NADH from one …