Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Chemicals and Drugs

Production And Purification Of Basic Fibroblast Growth Factor Fused To Two Collagen Binding Domains Expressed In E. Coli Bl21 Using Flask And Fed-Batch, Hazim Aljewari Dec 2019

Production And Purification Of Basic Fibroblast Growth Factor Fused To Two Collagen Binding Domains Expressed In E. Coli Bl21 Using Flask And Fed-Batch, Hazim Aljewari

Graduate Theses and Dissertations

Delivering effective and non-toxic doses of bioactive materials that can aid in activating tissue regeneration to wounded tissue has proven to be an enormous challenge. This study was designed to produce a potential therapeutic recombinant protein by fusing two collagen binding domains to basic fibroblast growth factors (bFGF) through a collagenase cleavage site linker, so it can release the bFGF in a wound site by the action of this enzyme. The novel fusion protein was expressed in Escherichia coli BL-21 (E. coli) using traditional flask shaker and fed-batch cultivation. Cell lysate was purified by FPLC using Immobilized metal affinity chromatography …


Investigating The Effects Of Excitotoxic Stimuli On The Suprachiasmatic Nucleus, Rachel A. Brandes Dec 2019

Investigating The Effects Of Excitotoxic Stimuli On The Suprachiasmatic Nucleus, Rachel A. Brandes

Chancellor’s Honors Program Projects

No abstract provided.


Influence Of Single And Multiple Histidine Residues And Their Ionization Properties On Transmembrane Helix Dynamics, Orientations And Fraying, Fahmida Afrose Dec 2019

Influence Of Single And Multiple Histidine Residues And Their Ionization Properties On Transmembrane Helix Dynamics, Orientations And Fraying, Fahmida Afrose

Graduate Theses and Dissertations

Since aromatic and charged residues are often present in various locations of transmembrane helices of integral membrane proteins, their impacts on the molecular properties of transmembrane proteins and their interactions with lipids are of particular interest in many studies. In this work, I used solid-state deuterium NMR spectroscopy in designed model peptide GWALP23 [GGALW(LA)6LWLAGA] with selective deuterium labels to addresses the pH dependence and influence of single and multiple “guest” histidine residues in the orientation and dynamic behaviors of transmembrane proteins. The mutations include Gly to His (G2/22 to H2/22), Trp to His (W5/19 to H5/19) and Leu to His …


Single Molecule Fluorescence Studies Of Protein Structure And Dynamics Underlying The Chloroplast Signal Recognition Particle Targeting Pathway, Dustin R. Baucom Dec 2019

Single Molecule Fluorescence Studies Of Protein Structure And Dynamics Underlying The Chloroplast Signal Recognition Particle Targeting Pathway, Dustin R. Baucom

Graduate Theses and Dissertations

The work presented in this dissertation explores the structural dynamics in the chloroplast signal recognition particle pathway. Findings include cpSRP shows scanning functionality similar to that in the cytosolic SRP with the ribosome. The intrinsically disordered C-terminal tail of the Albino3 protein has some transient secondary structure. Upon binding to cpSRP43 in solution, separate secondary structure formation was identified in the C-terminal tail of Albino3. Finally, to increase efficiency of analyzing fluorescence time traces for this work, a modular software was produced.


Probing Of Carbohydrate-Protein Interactions Using Galactonoamidine Inhibitors, Jessica B. Pickens Dec 2019

Probing Of Carbohydrate-Protein Interactions Using Galactonoamidine Inhibitors, Jessica B. Pickens

Graduate Theses and Dissertations

Glycoside hydrolases are ubiquitous and one of the most catalytically proficient enzymes known, and thus understanding their mechanisms are crucial. Most research has focused on the interaction of the glycon of substrates and their inhibitors within the active site of glycoside hydrolases. The inhibitors employed to probe these interactions generally had small aglycons (i.e. a hydrogen atom, amidines, small aliphatic groups, or benzyl groups). Here, the interactions of the aglycon with glycoside hydrolases are examined by probing the active sites with a library of 25 galactonoamidines. The studies described in this dissertation aim to increase the understanding of stabilization of …


Toward Understanding The Mechanism Of Protein Targeting In The Chloroplast Signal Recognition Particle Pathway, Mercede Furr Dec 2019

Toward Understanding The Mechanism Of Protein Targeting In The Chloroplast Signal Recognition Particle Pathway, Mercede Furr

Graduate Theses and Dissertations

Protein targeting is a vital cellular function. The signal recognition particle (SRP) pathway is a universally conserved targeting system present in the cytosol and used to co-translationally target many proteins to the inner membrane of prokaryotes and the endoplasmic reticulum of eukaryotes. The chloroplast has a homologous SRP system which post-translationally targets light harvesting chlorophyll binding proteins (LHCPs) to the thylakoid membrane for integration. The chloroplast SRP (cpSRP) is a heterodimer with a 54 kDa subunit equivalent to SRP54 in the canonical pathway. In addition, cpSRP contains a novel 43 kDa subunit which is a unique and irreplaceable component. cpSRP43 …


Developing A Dissociative Nanocontainer For Peptide Drug Delivery, Michael Patrick Kelly Sep 2019

Developing A Dissociative Nanocontainer For Peptide Drug Delivery, Michael Patrick Kelly

Dissertations, Theses, and Capstone Projects

The potency and specificity of bioactive peptides have propelled these agents to the forefront of pharmacological research. However, delivery of peptides to their molecular target in cells is a major obstacle to their widespread application. A Trojan Horse strategy of packaging a bioactive peptide within a modified protein cage to protect it during transport, and releasing it at the target site, is a promising delivery method. Recent work has demonstrated that the viral capsid of the P22 bacteriophage can be loaded with an arbitrary, genetically-encoded peptide, and externally decorated with a cell-penetrating peptide, such as HIV-Tat, to translocate across in …


Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa Jun 2019

Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa

LSU Doctoral Dissertations

The Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway transduces several signals crucial for development and homeostasis. Suppressors of cytokine signaling (SOCS) proteins control JAK-STAT signaling via a negative feedback loop. The transcription factor STAT5 is known to play a significant role in fat cell development and function, and several studies suggest that acetylation may affect STAT5 transcriptional activity. To test this hypothesis, we treated 3T3-L1 adipocytes with growth hormone (GH) to activate STAT5 in the presence or absence of histone deacetylase (HDAC) inhibitors. STAT5 acetylation levels were low in adipocytes and mostly unchanged by the …


Arachidin 3 Modulation Of Lipid Metabolism In Rotavirus Infections, Stormey Wisdom Jun 2019

Arachidin 3 Modulation Of Lipid Metabolism In Rotavirus Infections, Stormey Wisdom

Electronic Theses and Dissertations

Rotavirus (RV) can cause severe and deadly gastroenteritis in young children, infants, and immunocompromised individuals. Previous studies have shown that arachidin 3 (A3) inhibits RV replication, and that RV replication is dependent on the presence of lipids. This study investigated the alteration of lipid metabolism by A3 in RV infected HT29.f8 cells. A decrease in the RV regulation of lipid biosynthesis genes was observed with the addition of A3 using qRT-PCR. Also, immunofluorescent and histochemical staining for neutral fats, a major component of cellular lipid droplets, revealed an increased accumulation with both RV and RV+A3 when compared to no virus …


Investigations Of The Mechanism Of Action For Lung Cancer Cell Death By A 4-Trifluoromethoxy Substituted Chalcone, Trevor M. Stantliff May 2019

Investigations Of The Mechanism Of Action For Lung Cancer Cell Death By A 4-Trifluoromethoxy Substituted Chalcone, Trevor M. Stantliff

Undergraduate Theses

Chalcones are a diphenyl compound that serves as a natural precursor to flavonoids in plants. Chalcones have been shown to have anticancer and antimicrobial activities. Chemoprevention activity of chalcones are of high interest in medicinal chemistry because of the simple laboratory synthesis and modification via Claisen-Schmidt condensation. Previously this lab created and screened a library of synthetic chalcones against A549 lung adenocarcinoma cell line for antiproliferation properties. We identified a strong drug candidate (4-trifluoromethoxy substituted chalcone) for A549 growth inhibition. However, the cause of inhibition by the substituted chalcone remains to be identified We began to explore the mechanism of …


Targeting Sec61Α By Ipomoeassin F Leads To Highly Cytotoxic Effect, Zhijian Hu May 2019

Targeting Sec61Α By Ipomoeassin F Leads To Highly Cytotoxic Effect, Zhijian Hu

Graduate Theses and Dissertations

Ipomoeassin F is a flagship congener of a resin glycoside family that inhibits growth of many tumor cell lines with only single-digital nanomolar IC50 values. However, biological and pharmacological mechanisms of ipomoeassin F have been undefined. To facilitate exploration of the biological and pharmacological properties, we performed sophisticate SAR (Structure–activity relationship) studies of ipomoeassin F to understand its pharmacophore and structure properties so that we can design favorable probes for further biological investigation. By applying appropriate deviates that possess fluorescent groups and similar bio-activity, the target protein was found to be localized in endoplasmic reticulum (ER). Through biotin affinity pull …


Ck2 Negatively Regulates 5-Ht4 Receptor Signaling In The Prefrontal Cortex And Mediates Depression-Like Behaviors, Julia Castello Saval Feb 2019

Ck2 Negatively Regulates 5-Ht4 Receptor Signaling In The Prefrontal Cortex And Mediates Depression-Like Behaviors, Julia Castello Saval

Dissertations, Theses, and Capstone Projects

The serotonergic system has been the major candidate in the pathophysiology of mood related disorders such as anxiety and major depressive disorder (MDD). Unfortunately, current antidepressant drugs are ineffective in 50% of the population and require chronic administration for a period of 3-6 weeks before the onset of therapeutic response. 5-HT4 receptor (5-HT4R) agonists have emerged as potential candidates for fast antidepressant action, since an antidepressant response can be achieved after 3 days of pharmacological administration in rodents.

This dissertation aims to investigate the role of casein kinase 2 (CK2) as a regulator of 5-HT4R expression …


Regorafenib Enhances Lethality Of Sildenafil And Curcumin In Colorectal Cancer Cells, Kervin Benjamin Owusu Jan 2019

Regorafenib Enhances Lethality Of Sildenafil And Curcumin In Colorectal Cancer Cells, Kervin Benjamin Owusu

Theses and Dissertations

In the United States, more than 130,000 people will be diagnosed with colorectal cancer (CRC) each year and an estimated 50,000 people will die from the disease. Standard of care (SOC) therapies for CRC combine multiple cytotoxic chemotherapeutic drugs. These combinations have varying degrees of effectiveness and can often result in significant patient morbidity. For second recurrence patients, the multi-kinase inhibitor, regorafenib, is an approved agent, but is often poorly tolerated at current doses. In the current study, we propose to develop therapeutic regime of combining agents with modest toxicity profiles: curcumin and sildenafil with regorafenib. Using clinically achievable enterohepatic …


Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber Jan 2019

Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber

Theses and Dissertations--Pharmacy

Methyl group transfer from S-adenosyl-l-methionine (AdoMet) to various substrates including DNA, proteins, and natural products (NPs), is accomplished by methyltransferases (MTs). Analogs of AdoMet, bearing an alternative S-alkyl group can be exploited, in the context of an array of wild-type MT-catalyzed reactions, to differentially alkylate DNA, proteins, and NPs. This technology provides a means to elucidate MT targets by the MT-mediated installation of chemoselective handles from AdoMet analogs to biologically relevant molecules and affords researchers a fresh route to diversify NP scaffolds by permitting the differential alkylation of chemical sites vulnerable to NP MTs that are unreactive to …


Characterization Of The Microbial Phosphonate-Activating Pntc Enzymes, Kyle Rice Jan 2019

Characterization Of The Microbial Phosphonate-Activating Pntc Enzymes, Kyle Rice

Theses and Dissertations (Comprehensive)

New strategies are urgently needed to combat infectious diseases in an era of rising antibiotic resistance. Furthermore, an emerging appreciation for the human microbiome’s role in maintaining health motivates discovery of species-specific antibiotics that minimally disrupt our native bacterial communities. Small molecule modifications to bacterial cell surfaces represent a potentially rich source of new targets for next generation antibiotics, as these molecules mediate virulence and evasion of the host immune response. Phosphocholine (PCho) is a rare cell surface modification that contributes to virulence, and modifications with phosphonates like 2-aminoethylphosphonate (AEP) are even more unusual and therefore provide opportunities for species- …