Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Analytical, Diagnostic and Therapeutic Techniques and Equipment

Characterization Of Treatment Planning System Photon Beam Modeling Errors In Iroc Houston Phantom Irradiations, Mallory Glenn Aug 2020

Characterization Of Treatment Planning System Photon Beam Modeling Errors In Iroc Houston Phantom Irradiations, Mallory Glenn

Dissertations & Theses (Open Access)

In radiation therapy, proper commissioning of the treatment planning system’s (TPS) dose calculation algorithm is critical because any errors in this process impact all treatment plans prepared in the system. Previously, TPS errors have been identified as a major cause for poor phantom irradiation performance, which may also mean that patients are treated suboptimally. The purpose of this work was to investigate the TPS beam modeling developed by the radiotherapy community to understand where inconsistencies may arise, which variables are most susceptible to variations, and in what way changing these variables can alter dose calculations.

Using the Imaging and Radiation …


Improvements In Four-Dimensional And Dual Energy Computed Tomography, Rachael M. Martin Aug 2017

Improvements In Four-Dimensional And Dual Energy Computed Tomography, Rachael M. Martin

Dissertations & Theses (Open Access)

Dual energy and 4D computed tomography (CT) seek to address some of the limitations in traditional CT imaging. Dual energy CT, among other purposes, allows for the quantification and improved visualization of contrast materials, and 4D CT is often used in radiation therapy applications as it allows for the visualization and quantification of object motion. While much research has been done with these technologies, areas remain for potential improvement, both in preclinical and clinical settings, which will be explored in this dissertation. Preclinical dual energy cone-beam CT (CBCT) can benefit from wider separation between the peak energy of the two …


Novel Simulation To Avoid Bias In Measurement Of Hyperpolarized Pyruvate: Demonstrated In Phantom And In Vivo, Christopher M. Walker Dec 2016

Novel Simulation To Avoid Bias In Measurement Of Hyperpolarized Pyruvate: Demonstrated In Phantom And In Vivo, Christopher M. Walker

Dissertations & Theses (Open Access)

Dynamic nuclear polarization creates a transient hyperpolarized nuclear state that can dramatically increase the signal detected by magnetic resonance imaging. This signal increase allows real-time spectroscopic imaging of specific metabolites in vivo by magnetic resonance. Real-time imaging of both the spatial and chemical fate of hyperpolarized metabolites is showing great promise to meaningfully benefit clinical care of cancer patients. Imaging of hyperpolarized agents will have a larger clinical impact if it can function as a quantitative modality upon which clinical decisions can be made. However, quantitative measurement of hyperpolarized agents is currently difficult due to the restrictions imposed by the …


An Automated Syringe Pump System For Improving The Reproducibility Of Dynamic Hyperpolarized Mri Phantoms, Harlee G. Harrison Aug 2016

An Automated Syringe Pump System For Improving The Reproducibility Of Dynamic Hyperpolarized Mri Phantoms, Harlee G. Harrison

Dissertations & Theses (Open Access)

AN AUTOMATED SYRINGE PUMP SYSTEM FOR IMPROVING THE REPRODUCIBILITY OF DYNAMIC HYPERPOLARIZED MRI PHANTOMS

Harlee Grace Harrison, B.S.

Advisory Professor: James Bankson, Ph.D.

Magnetic Resonance Imaging (MRI) is a powerful tool in the diagnosis of cancer due to its ability to provide good soft tissue contrast and image resolution without the use of ionizing radiation. The use of hyperpolarized pyruvate as a contrast agent for tumor metabolism during MR scans has the potential to provide information about tumor metabolism in vivo that is not available from traditional imaging measurements or any other method. Hyperpolarization is achieved through dynamic nuclear polarization. …


Scanned Ion Beam Therapy For Thoracic Tumors, John Gordon Eley Dec 2013

Scanned Ion Beam Therapy For Thoracic Tumors, John Gordon Eley

Dissertations & Theses (Open Access)

Although frequently cured of Hodgkin lymphoma, adolescents and young adults can develop radiation induced second cancers. These patients could potentially benefit from scanned ion radiotherapy yet likely would require motion mitigation strategies. In theory, four-dimensional (4D) optimization of ion beam fields for individual motion states of respiration can enable superior sparing of healthy tissue near moving targets, compared to other motion mitigation strategies. Furthermore, carbon-ion therapy can sometimes provide greater relative biological effectiveness (RBE) for cell sterilization in a target but nearly equivalent RBE in tissue upstream of the target, compared to proton therapy. Thus, we expected that for some …


Design And Optimization Of Four-Dimensional Cone-Beam Computed Tomography In Image-Guided Radiation Therapy, Moiz Ahmad Dec 2012

Design And Optimization Of Four-Dimensional Cone-Beam Computed Tomography In Image-Guided Radiation Therapy, Moiz Ahmad

Dissertations & Theses (Open Access)

The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the …


Evaluation Of Deformable Image Registration For Improved 4d Ct-Derived Ventilation For Image Guided Radiotherapy, Richard Castillo Dec 2011

Evaluation Of Deformable Image Registration For Improved 4d Ct-Derived Ventilation For Image Guided Radiotherapy, Richard Castillo

Dissertations & Theses (Open Access)

Recent treatment planning studies have demonstrated the use of physiologic images in radiation therapy treatment planning to identify regions for functional avoidance. This image-guided radiotherapy (IGRT) strategy may reduce the injury and/or functional loss following thoracic radiotherapy. 4D computed tomography (CT), developed for radiotherapy treatment planning, is a relatively new imaging technique that allows the acquisition of a time-varying sequence of 3D CT images of the patient's lungs through the respiratory cycle. Guerrero et al. developed a method to calculate ventilation imaging from 4D CT, which is potentially better suited and more broadly available for IGRT than the current standard …


The Development And Implementation Of An Anthropomorphic Head Phantom For The Assessment Of Proton Therapy Treatment Procedures, Paige A. Summers Aug 2011

The Development And Implementation Of An Anthropomorphic Head Phantom For The Assessment Of Proton Therapy Treatment Procedures, Paige A. Summers

Dissertations & Theses (Open Access)

Proton therapy has become an increasingly more common method of radiation therapy, with the dose sparing to distal tissue making it an appealing option, particularly for treatment of brain tumors. This study sought to develop a head phantom for the Radiological Physics Center (RPC), the first to be used for credentialing of institutions wishing to participate in clinical trials involving brain tumor treatment of proton therapy. It was hypothesized that a head phantom could be created for the evaluation of proton therapy treatment procedures (treatment simulation, planning, and delivery) to assure agreement between the measured dose and calculated dose within …


Evaluation Of Intensity Modulated Radiation Therapy (Imrt) Delivery Error Due To Imrt Treatment Plan Complexity And Improperly Matched Dosimetry Data, Jacqueline R. Tonigan Aug 2011

Evaluation Of Intensity Modulated Radiation Therapy (Imrt) Delivery Error Due To Imrt Treatment Plan Complexity And Improperly Matched Dosimetry Data, Jacqueline R. Tonigan

Dissertations & Theses (Open Access)

Intensity modulated radiation therapy (IMRT) is a technique that delivers a highly conformal dose distribution to a target volume while attempting to maximally spare the surrounding normal tissues. IMRT is a common treatment modality used for treating head and neck (H&N) cancers, and the presence of many critical structures in this region requires accurate treatment delivery. The Radiological Physics Center (RPC) acts as both a remote and on-site quality assurance agency that credentials institutions participating in clinical trials. To date, about 30% of all IMRT participants have failed the RPC’s remote audit using the IMRT H&N phantom. The purpose …


Clinical Impact Of Couch Top And Rails On Imrt And Arc Therapy, Kiley B. Pulliam Aug 2011

Clinical Impact Of Couch Top And Rails On Imrt And Arc Therapy, Kiley B. Pulliam

Dissertations & Theses (Open Access)

Purpose: To evaluate the clinical impact of the Varian Exact Couch on dose and volume coverage to targets and critical structures and tumor control probability (TCP) for 6-MV IMRT and Arc Therapy.

Methods: Five clinical prostate patients were planned with both, 6-MV 8-field IMRT and 6-MV 2-field RapidArc using the Eclipse treatment planning system (TPS). These plans neglected treatment couch attenuation, as is standard clinical practice. Dose distributions were then recalculated in Eclipse with the inclusion of the Varian Exact Couch (imaging couch top) and the rails in varying configurations. The changes in dose and coverage were evaluated using the …


Commissioning An Anthropomorphic Spine And Lung Phantom For Remote Dose Verification Of Institutions Participating In Rtog 0631, Douglas F. Caruthers May 2010

Commissioning An Anthropomorphic Spine And Lung Phantom For Remote Dose Verification Of Institutions Participating In Rtog 0631, Douglas F. Caruthers

Dissertations & Theses (Open Access)

The RPC developed a new phantom to ensure comparable and consistent radiation administration in spinal radiosurgery clinical trials. This study assessed the phantom’s dosimetric and anatomic utility. The ‘spine phantom’ is a water filled thorax with anatomy encountered in spinal radiosurgery: target volume, vertebral column, spinal canal, esophagus, heart, and lungs. The dose to the target volume was measured with axial and sagittal planes of radiochromic film and thermoluminescent dosimeters (TLD). The dose distributions were measured with the radiochromic film calibrated to the absolute dose measured by the TLD. Four irradiations were administered: a four angle box plan, a seven …