Open Access. Powered by Scholars. Published by Universities.®

Sports Sciences

2021

FMRI

Articles 1 - 2 of 2

Full-Text Articles in Analytical, Diagnostic and Therapeutic Techniques and Equipment

Deep-Learning-Based Multivariate Pattern Analysis (Dmvpa): A Tutorial And A Toolbox, Karl M. Kuntzelman, Jacob M. Williams, Phui Cheng Lim, Ashtok Samal, Prahalada K. Rao, Matthew R. Johnson Mar 2021

Deep-Learning-Based Multivariate Pattern Analysis (Dmvpa): A Tutorial And A Toolbox, Karl M. Kuntzelman, Jacob M. Williams, Phui Cheng Lim, Ashtok Samal, Prahalada K. Rao, Matthew R. Johnson

Center for Brain, Biology, and Behavior: Faculty and Staff Publications

In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, “deep learning” (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on …


Resting Cerebral Oxygen Metabolism Exhibits Archetypal Network Features, Nicholas A. Hubbard, Monroe P. Turner, Kevin R. Sitek, Kathryn L. West, Jakub R. Kaczmarzyk, Lyndahl Himes, Binu P. Thomas, Hanzhang Lu, Bart Rypma Jan 2021

Resting Cerebral Oxygen Metabolism Exhibits Archetypal Network Features, Nicholas A. Hubbard, Monroe P. Turner, Kevin R. Sitek, Kathryn L. West, Jakub R. Kaczmarzyk, Lyndahl Himes, Binu P. Thomas, Hanzhang Lu, Bart Rypma

Center for Brain, Biology, and Behavior: Faculty and Staff Publications

Standard magnetic resonance imaging approaches offer high-resolution but indirect measures of neural activity, limiting understanding of the physiological processes associated with imaging findings. Here, we used calibrated functional magnetic resonance imaging during the resting state to recover low-frequency fluctuations of the cerebral metabolic rate of oxygen (CMRO2). We tested whether functional connections derived from these fluctuations exhibited organization properties similar to those established by previous standard functional and anatomical connectivity studies. Seventeen participants underwent 20 min of resting imaging during dual-echo, pseudocontinuous arterial spin labeling, and blood-oxygen-level dependent (BOLD) signal acquisition. Participants also underwent a 10 min normocapnic and hypercapnic …