Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Electrical & Computer Engineering Faculty Publications

Computer aided diagnosis

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Analytical, Diagnostic and Therapeutic Techniques and Equipment

Bcc Skin Cancer Diagnosis Based On Texture Analysis Techniques, Shao-Hui Chuang, Xiaoyan Sun, Wen-Yu Chang, Gwo-Shing Chen, Adam Huang, Jiang Li, Frederic D. Mckenzie Jan 2011

Bcc Skin Cancer Diagnosis Based On Texture Analysis Techniques, Shao-Hui Chuang, Xiaoyan Sun, Wen-Yu Chang, Gwo-Shing Chen, Adam Huang, Jiang Li, Frederic D. Mckenzie

Electrical & Computer Engineering Faculty Publications

In this paper, we present a texture analysis based method for diagnosing the Basal Cell Carcinoma (BCC) skin cancer using optical images taken from the suspicious skin regions. We first extracted the Run Length Matrix and Haralick texture features from the images and used a feature selection algorithm to identify the most effective feature set for the diagnosis. We then utilized a Multi-Layer Perceptron (MLP) classifier to classify the images to BCC or normal cases. Experiments showed that detecting BCC cancer based on optical images is feasible. The best sensitivity and specificity we achieved on our data set were 94% …


Automatic Diagnosis For Prostate Cancer Using Run-Length Matrix Method, Xiaoyan Sun, Shao-Hui Chuang, Jiang Li, Frederic Mckenzie, Nico Karssemeijer (Ed.), Maryellen L. Giger (Ed.) Jan 2009

Automatic Diagnosis For Prostate Cancer Using Run-Length Matrix Method, Xiaoyan Sun, Shao-Hui Chuang, Jiang Li, Frederic Mckenzie, Nico Karssemeijer (Ed.), Maryellen L. Giger (Ed.)

Electrical & Computer Engineering Faculty Publications

Prostate cancer is the most common type of cancer and the second leading cause of cancer death among men in US1. Quantitative assessment of prostate histology provides potential automatic classification of prostate lesions and prediction of response to therapy. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific antigen (PSA) levels and histopathological images of biopsy samples under microscopes. In this application, we utilize a texture analysis method based on the run-length matrix for identifying tissue abnormalities in prostate histology. A tissue sample was collected from a radical prostatectomy, H&E fixed, and assessed by a pathologist …


Wavelet Analysis In Virtual Colonoscopy, Sharon Greenblum, Jiang Li, Adam Huang, Ronald M. Summers, Armando Manduca (Ed.), Amir A. Amini (Ed.) Jan 2006

Wavelet Analysis In Virtual Colonoscopy, Sharon Greenblum, Jiang Li, Adam Huang, Ronald M. Summers, Armando Manduca (Ed.), Amir A. Amini (Ed.)

Electrical & Computer Engineering Faculty Publications

The computed tomographic colonography (CTC) computer aided detection (CAD) program is a new method in development to detect colon polyps in virtual colonoscopy. While high sensitivity is consistently achieved, additional features are desired to increase specificity. In this paper, a wavelet analysis was applied to CTCCAD outputs in an attempt to filter out false positive detections. 52 CTCCAD detection images were obtained using a screen capture application. 26 of these images were real polyps, confirmed by optical colonoscopy and 26 were false positive detections. A discrete wavelet transform of each image was computed with the MATLAB wavelet toolbox using the …


Hybrid Committee Classifier For A Computerized Colonic Polyp Detection System, Jiang Li, Jianhua Yao, Nicholas Petrick, Ronald M. Summers, Amy K. Hara, Joseph M. Reinhardt (Ed.), Josien P.W. Pluim (Ed.) Jan 2006

Hybrid Committee Classifier For A Computerized Colonic Polyp Detection System, Jiang Li, Jianhua Yao, Nicholas Petrick, Ronald M. Summers, Amy K. Hara, Joseph M. Reinhardt (Ed.), Josien P.W. Pluim (Ed.)

Electrical & Computer Engineering Faculty Publications

We present a hybrid committee classifier for computer-aided detection (CAD) of colonic polyps in CT colonography (CTC). The classifier involved an ensemble of support vector machines (SVM) and neural networks (NN) for classification, a progressive search algorithm for selecting a set of features used by the SVMs and a floating search algorithm for selecting features used by the NNs. A total of 102 quantitative features were calculated for each polyp candidate found by a prototype CAD system. 3 features were selected for each of 7 SVM classifiers which were then combined to form a committee of SVMs classifier. Similarly, features …