Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Medicine and Health Sciences

Unusual Substrate And Halide Versatility Of Phenolic Halogenase Pltm, Shogo Mori, Allan H. Pang, Nishad Thamban Chandrika, Sylvie Garneau-Tsodikova, Oleg V. Tsodikov Mar 2019

Unusual Substrate And Halide Versatility Of Phenolic Halogenase Pltm, Shogo Mori, Allan H. Pang, Nishad Thamban Chandrika, Sylvie Garneau-Tsodikova, Oleg V. Tsodikov

Pharmaceutical Sciences Faculty Publications

Controlled halogenation of chemically versatile substrates is difficult to achieve. Here we describe a unique flavin-dependent halogenase, PltM, which is capable of utilizing a wide range of halides for installation on a diverse array of phenolic compounds, including FDA-approved drugs and natural products, such as terbutaline, fenoterol, resveratrol, and catechin. Crystal structures of PltM in complex with phloroglucinol and FAD in different states yield insight into substrate recognition and the FAD recycling mechanism of this halogenase.


Role Of Protein Charge Density On Hepatitis B Virus Capsid Formation, Xinyu Sun, Dong Li, Zhaoshuai Wang, Panchao Yin, Rundong Hu, Rundong Hu, Hui Li, Qiao Liu, Yunyi Gao, Baiping Ren, Jie Zheng, Yinan Wei, Tianbo Liu Apr 2018

Role Of Protein Charge Density On Hepatitis B Virus Capsid Formation, Xinyu Sun, Dong Li, Zhaoshuai Wang, Panchao Yin, Rundong Hu, Rundong Hu, Hui Li, Qiao Liu, Yunyi Gao, Baiping Ren, Jie Zheng, Yinan Wei, Tianbo Liu

Chemistry Faculty Publications

The role of electrostatic interactions in the viral capsid assembly process was studied by comparing the assembly process of a truncated hepatitis B virus capsid protein Cp149 with its mutant protein D2N/D4N, which has the same conformational structure but four fewer charges per dimer. The capsid protein self-assembly was investigated under a wide range of protein surface charge densities by changing the protein concentration, buffer pH, and solution ionic strength. Lowering the protein charge density favored the capsid formation. However, lowering charge beyond a certain point resulted in capsid aggregation and precipitation. Interestingly, both the wild-type and D2N/D4N mutant displayed …


Informing Efforts To Develop Nitroreductase For Amine Production, Anne-Frances Miller, Jonathan T. Park, Kyle L. Ferguson, Warintra Pitsawong, Andreas S. Bommarius Jan 2018

Informing Efforts To Develop Nitroreductase For Amine Production, Anne-Frances Miller, Jonathan T. Park, Kyle L. Ferguson, Warintra Pitsawong, Andreas S. Bommarius

Chemistry Faculty Publications

Nitroreductases (NRs) hold promise for converting nitroaromatics to aromatic amines. Nitroaromatic reduction rate increases with Hammett substituent constant for NRs from two different subgroups, confirming substrate identity as a key determinant of reactivity. Amine yields were low, but compounds yielding amines tend to have a large π system and electron withdrawing substituents. Therefore, we also assessed the prospects of varying the enzyme. Several different subgroups of NRs include members able to produce aromatic amines. Comparison of four NR subgroups shows that they provide contrasting substrate binding cavities with distinct constraints on substrate position relative to the flavin. The unique architecture …


Blocking An N-Terminal Acetylation-Dependent Protein Interaction Inhibits An E3 Ligase, Daniel C. Scott, Jared T. Hammill, Jaeki Min, David Y. Rhee, Michele Connelly, Vladislav O. Sviderskiy, Deepak Bhasin, Yizhe Chen, Su-Sien Ong, Sergio C. Chai, Asli N. Goktug, Guochang Huang, Julie K. Monda, Jonathan Low, Ho Shin Kim, Joao A. Paulo, Joe R. Cannon, Anang A. Shelat, Taosheng Chen, Ian R. Kelsall, Arno F. Alpi, Vishwajeeth Pagala, Xusheng Wang, Junmin Peng, Bhuvanesh Singh, J. Wade Harper, Brenda A. Schulman, R. Kiplin Guy Aug 2017

Blocking An N-Terminal Acetylation-Dependent Protein Interaction Inhibits An E3 Ligase, Daniel C. Scott, Jared T. Hammill, Jaeki Min, David Y. Rhee, Michele Connelly, Vladislav O. Sviderskiy, Deepak Bhasin, Yizhe Chen, Su-Sien Ong, Sergio C. Chai, Asli N. Goktug, Guochang Huang, Julie K. Monda, Jonathan Low, Ho Shin Kim, Joao A. Paulo, Joe R. Cannon, Anang A. Shelat, Taosheng Chen, Ian R. Kelsall, Arno F. Alpi, Vishwajeeth Pagala, Xusheng Wang, Junmin Peng, Bhuvanesh Singh, J. Wade Harper, Brenda A. Schulman, R. Kiplin Guy

Pharmaceutical Sciences Faculty Publications

N-terminal acetylation is an abundant modification influencing protein functions. Because ∼80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are …


Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried Jul 2017

Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried

Center for Structural Biology Faculty Publications

Human O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. The search for these lesions, through a vast excess of competing, unmodified genomic DNA, is a mechanistic challenge that may limit the repair rate in vivo. Here, we examine influences of DNA secondary structure and twist on protein–protein interactions in cooperative AGT complexes formed on lesion-free DNAs that model the unmodified parts of the genome. We used a new approach to resolve nearest neighbor (nn) and long-range (lr) components from the ensemble-average cooperativity, ωave. We found …


An Arginine Finger Regulates The Sequential Action Of Asymmetrical Hexameric Atpase In The Double-Stranded Dna Translocation Motor, Zhengyi Zhao, Gian Marco De-Donatis, Chad T. Schwartz, Huaming Fang, Jingyuan Li, Peixuan Guo Oct 2016

An Arginine Finger Regulates The Sequential Action Of Asymmetrical Hexameric Atpase In The Double-Stranded Dna Translocation Motor, Zhengyi Zhao, Gian Marco De-Donatis, Chad T. Schwartz, Huaming Fang, Jingyuan Li, Peixuan Guo

Pharmaceutical Sciences Faculty Publications

Biological motors are ubiquitous in living systems. Currently, how the motor components coordinate the unidirectional motion is elusive in most cases. Here, we report that the sequential action of the ATPase ring in the DNA packaging motor of bacteriophage ϕ29 is regulated by an arginine finger that extends from one ATPase subunit to the adjacent unit to promote noncovalent dimer formation. Mutation of the arginine finger resulted in the interruption of ATPase oligomerization, ATP binding/hydrolysis, and DNA translocation. Dimer formation reappeared when arginine mutants were mixed with other ATPase subunits that can offer the arginine to promote their interaction. Ultracentrifugation …


Deubiquitinase Usp47/Ubp64e Regulates Β-Catenin Ubiquitination And Degradation And Plays A Positive Role In Wnt Signaling, Jiandang Shi, Yajuan Liu, Xuehe Xu, Wen Zhang, Tianxin Yu, Jianhang Jia, Chunming Liu Oct 2015

Deubiquitinase Usp47/Ubp64e Regulates Β-Catenin Ubiquitination And Degradation And Plays A Positive Role In Wnt Signaling, Jiandang Shi, Yajuan Liu, Xuehe Xu, Wen Zhang, Tianxin Yu, Jianhang Jia, Chunming Liu

Markey Cancer Center Faculty Publications

Wnt signaling plays important roles in development and tumorigenesis. A central question about the Wnt pathway is the regulation of β-catenin. Phosphorylation of β-catenin by CK1α and GSK3 promotes β-catenin binding to β-TrCP, leading to β-catenin degradation through the proteasome. The phosphorylation and ubiquitination of β-catenin have been well characterized; however, it is unknown whether and how a deubiquitinase is involved. In this study, by screening RNA interference (RNAi) libraries, we identified USP47 as a deubiquitinase that prevents β-catenin ubiquitination. Inactivation of USP47 by RNAi increased β-catenin ubiquitination, attenuated Wnt signaling, and repressed cancer cell growth. Furthermore, USP47 deubiquitinates itself, …


Influence Of Linker Length And Composition On Enzymatic Activity And Ribosomal Binding Of Neomycin Dimers, Derrick Watkins, Sunil Kumar, Keith D. Green, Dev P. Arya, Sylvie Garneau-Tsodikova Jul 2015

Influence Of Linker Length And Composition On Enzymatic Activity And Ribosomal Binding Of Neomycin Dimers, Derrick Watkins, Sunil Kumar, Keith D. Green, Dev P. Arya, Sylvie Garneau-Tsodikova

Pharmaceutical Sciences Faculty Publications

The human and bacterial A site rRNA binding as well as the aminoglycoside-modifying enzyme (AME) activity against a series of neomycin B (NEO) dimers is presented. The data indicate that by simple modifications of linker length and composition, substantial differences in rRNA selectivity and AME activity can be obtained. We tested five different AMEs with dimeric NEO dimers that were tethered via triazole, urea, and thiourea linkages. We show that triazole-linked dimers were the worst substrates for most AMEs, with those containing the longer linkers showing the largest decrease in activity. Thiourea-linked dimers that showed a decrease in activity by …


Human Dna Exonuclease Trex1 Is Also An Exoribonuclease That Acts On Single-Stranded Rna, Fenghua Yuan, Tanmay Dutta, Ling Wang, Lei Song, Liya Gu, Liangyue Qian, Anaid Benitez, Shunbin Ning, Arun Malhotra, Murray P. Deutscher, Yanbin Zhang May 2015

Human Dna Exonuclease Trex1 Is Also An Exoribonuclease That Acts On Single-Stranded Rna, Fenghua Yuan, Tanmay Dutta, Ling Wang, Lei Song, Liya Gu, Liangyue Qian, Anaid Benitez, Shunbin Ning, Arun Malhotra, Murray P. Deutscher, Yanbin Zhang

Toxicology and Cancer Biology Faculty Publications

3' repair exonuclease 1 (TREX1) is a known DNA exonuclease involved in autoimmune disorders and the antiviral response. In this work, we show that TREX1 is also a RNA exonuclease. Purified TREX1 displays robust exoribonuclease activity that degrades single-stranded, but not double-stranded, RNA. TREX1-D200N, an Aicardi-Goutieres syndrome disease-causing mutant, is defective in degrading RNA. TREX1 activity is strongly inhibited by a stretch of pyrimidine residues as is a bacterial homolog, RNase T. Kinetic measurements indicate that the apparent Km of TREX1 for RNA is higher than that for DNA. Like RNase T, human TREX1 is active in degrading native …


Borrelia Burgdorferi Cp32 Bpab Modulates Expression Of The Prophage Nucp Nuclease And Ssbp Single-Stranded Dna-Binding Protein, Alicia M. Chenail, Brandon L. Jutras, Claire A. Adams, Logan H. Burns, Amy Bowman, Ashutosh Verma, Brian Stevenson Sep 2012

Borrelia Burgdorferi Cp32 Bpab Modulates Expression Of The Prophage Nucp Nuclease And Ssbp Single-Stranded Dna-Binding Protein, Alicia M. Chenail, Brandon L. Jutras, Claire A. Adams, Logan H. Burns, Amy Bowman, Ashutosh Verma, Brian Stevenson

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The Borrelia burgdorferi BpaB proteins of the spirochete's ubiquitous cp32 prophages are DNA-binding proteins, required both for maintenance of the bacteriophage episomes and for transcriptional regulation of the cp32 erp operons. Through use of DNase I footprinting, we demonstrate that BpaB binds the erp operator initially at the sequence 5′-TTATA-3′. Electrophoretic mobility shift assays indicated that BpaB also binds with high affinity to sites located in the 5′ noncoding regions of two additional cp32 genes. Characterization of the proteins encoded by those genes indicated that they are a single-stranded DNA-binding protein and a nuclease, which we named SsbP and NucP, …


Bpab, A Novel Protein Encoded By The Lyme Disease Spirochete's Cp32 Prophages, Binds To Erp Operator 2 Dna, Logan H. Burns, Claire A. Adams, Sean P. Riley, Brandon L. Jutras, Amy Bowman, Alicia M. Chenail, Anne E. Cooley, Laura A. Haselhorst, Alisha M. Moore, Kelly Babb, Michael G. Fried, Brian Stevenson Sep 2010

Bpab, A Novel Protein Encoded By The Lyme Disease Spirochete's Cp32 Prophages, Binds To Erp Operator 2 Dna, Logan H. Burns, Claire A. Adams, Sean P. Riley, Brandon L. Jutras, Amy Bowman, Alicia M. Chenail, Anne E. Cooley, Laura A. Haselhorst, Alisha M. Moore, Kelly Babb, Michael G. Fried, Brian Stevenson

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Borrelia burgdorferi produces Erp outer surface proteins throughout mammalian infection, but represses their synthesis during colonization of vector ticks. A DNA region 5′ of the start of erp transcription, Operator 2, was previously shown to be essential for regulation of expression. We now report identification and characterization of a novel erp Operator 2-binding protein, which we named BpaB. erp operons are located on episomal cp32 prophages, and a single bacterium may contain as many as 10 different cp32s. Each cp32 family member encodes a unique BpaB protein, yet the three tested cp32-encoded BpaB alleles all bound to the same DNA …


Individual Micrornas (Mirnas) Display Distinct Mrna Targeting "Rules", Wang-Xia Wang, Bernard R. Wilfred, Kevin Xie, Mary H. Jennings, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson May 2010

Individual Micrornas (Mirnas) Display Distinct Mrna Targeting "Rules", Wang-Xia Wang, Bernard R. Wilfred, Kevin Xie, Mary H. Jennings, Yanling Hu, Arnold J. Stromberg, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

MicroRNAs (miRNAs) guide Argonaute (AGO)-containing microribonucleoprotein (miRNP) complexes to target mRNAs.It has been assumed that miRNAs behave similarly to each other with regard to mRNA target recognition. The usual assumptions, which are based on prior studies, are that miRNAs target preferentially sequences in the 3'UTR of mRNAs,guided by the 5' "seed" portion of the miRNAs. Here we isolated AGO- and miRNA-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with anti-AGO antibody. Cells were transfected with miR-107, miR-124,miR-128, miR-320, or a negative control miRNA. Co-IPed RNAs were subjected to downstream high-density Affymetrix Human Gene 1.0 ST microarray analyses using …


Borrelia Burgdorferi Ebfc Defines A Newly-Identified, Widespread Family Of Bacterial Dna-Binding Proteins, Sean P. Riley, Tomasz Bykowski, Anne E. Cooley, Logan H. Burns, Kelly Babb, Catherine A. Brissette, Amy Bowman, Matthew L. Rotondi, M. Clarke Miller, Edward Demoll, Kap Lim, Michael G. Fried, Brian Stevenson Apr 2009

Borrelia Burgdorferi Ebfc Defines A Newly-Identified, Widespread Family Of Bacterial Dna-Binding Proteins, Sean P. Riley, Tomasz Bykowski, Anne E. Cooley, Logan H. Burns, Kelly Babb, Catherine A. Brissette, Amy Bowman, Matthew L. Rotondi, M. Clarke Miller, Edward Demoll, Kap Lim, Michael G. Fried, Brian Stevenson

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The Lyme disease spirochete, Borrelia burgdorferi, encodes a novel type of DNA-binding protein named EbfC. Orthologs of EbfC are encoded by a wide range of bacterial species, so characterization of the borrelial protein has implications that span the eubacterial kingdom. The present work defines the DNA sequence required for high-affinity binding by EbfC to be the 4 bp broken palindrome GTnAC, where ‘n’ can be any nucleotide. Two high-affinity EbfC-binding sites are located immediately 5′ of B. burgdorferi erp transcriptional promoters, and binding of EbfC was found to alter the conformation of erp promoter DNA. Consensus EbfC-binding …