Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Cell and Developmental Biology

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 208

Full-Text Articles in Medicine and Health Sciences

Bioinformatic Analysis Of Proteomic And Genomic Data From Nsclc Tumors On Prognostic And Predictive Factors Of Immunotherapy Treatment, Mark Wuenschel Jan 2023

Bioinformatic Analysis Of Proteomic And Genomic Data From Nsclc Tumors On Prognostic And Predictive Factors Of Immunotherapy Treatment, Mark Wuenschel

Theses and Dissertations--Pharmacy

Recent lung cancer research has led to advancements in molecular immunology, resulting in development of small molecule inhibitors, or immune checkpoint inhibitors, that propagate an anti-tumor T cell response. Despite increased overall and progression-free survival with reduced adverse effects compared to traditional chemotherapy, treating advanced stage lung adenocarcinoma patients remains non-curative, and evidence of non-responders or tumor recurrence to immune checkpoint inhibitor therapy is growing. Also, compared to traditional chemotherapy, there is a lower percentage of patients who respond to small molecule inhibitors. In this analysis of proteomic and genomic data from The Cancer Proteome Atlas and Global Data Commons …


A Muscle Cell-Macrophage Axis Involving Matrix Metalloproteinase 14 Facilitates Extracellular Matrix Remodeling With Mechanical Loading, Bailey D. Peck, Kevin A. Murach, R. Grace Walton, Alexander J. Simmons, Douglas E. Long, Kate Kosmac, Cory M. Dungan, Philip A. Kern, Marcas M. Bamman, Charlotte A. Peterson Jan 2022

A Muscle Cell-Macrophage Axis Involving Matrix Metalloproteinase 14 Facilitates Extracellular Matrix Remodeling With Mechanical Loading, Bailey D. Peck, Kevin A. Murach, R. Grace Walton, Alexander J. Simmons, Douglas E. Long, Kate Kosmac, Cory M. Dungan, Philip A. Kern, Marcas M. Bamman, Charlotte A. Peterson

Center for Muscle Biology Faculty Publications

The extracellular matrix (ECM) in skeletal muscle plays an integral role in tissue development, structural support, and force transmission. For successful adaptation to mechanical loading, remodeling processes must occur. In a large cohort of older adults, transcriptomics revealed that genes involved in ECM remodeling, including matrix metalloproteinase 14 (MMP14), were the most upregulated following 14 weeks of progressive resistance exercise training (PRT). Using single-cell RNA-seq, we identified macrophages as a source of Mmp14 in muscle following a hypertrophic exercise stimulus in mice. In vitro contractile activity in myotubes revealed that the gene encoding cytokine leukemia inhibitory factor ( …


Upregulation Of Cd36, A Fatty Acid Translocase, Promotes Colorectal Cancer Metastasis By Increasing Mmp28 And Decreasing E-Cadherin Expression, James Drury, Piotr G. Rychahou, Courtney O. Kelson, Mariah E. Geisen, Yuanyuan Wu, Daheng He, Chi Wang, Eun Y. Lee, B. Mark Evers, Yekaterina Y. Zaytseva Jan 2022

Upregulation Of Cd36, A Fatty Acid Translocase, Promotes Colorectal Cancer Metastasis By Increasing Mmp28 And Decreasing E-Cadherin Expression, James Drury, Piotr G. Rychahou, Courtney O. Kelson, Mariah E. Geisen, Yuanyuan Wu, Daheng He, Chi Wang, Eun Y. Lee, B. Mark Evers, Yekaterina Y. Zaytseva

Surgery Faculty Publications

Altered fatty acid metabolism continues to be an attractive target for therapeutic intervention in cancer. We previously found that colorectal cancer (CRC) cells with a higher metastatic potential express a higher level of fatty acid translocase (CD36). However, the role of CD36 in CRC metastasis has not been studied. Here, we demonstrate that high expression of CD36 promotes invasion of CRC cells. Consistently, CD36 promoted lung metastasis in the tail vein model and GI metastasis in the cecum injection model. RNA-Seq analysis of CRC cells with altered expression of CD36 revealed an association between high expression of CD36 and upregulation …


Novel Mechanism Of Endogenous Pancreatic Cancer Cell Expression Of Immune Checkpoint Programmed Cell-Death 1 Protein (Pd-1) Inducing Epithelial-To-Mesenchymal Transition (Emt) Through The Met Pathway And Promoting Cancer Progression In An Immune-Independent Process, Megan M. Harper Jan 2022

Novel Mechanism Of Endogenous Pancreatic Cancer Cell Expression Of Immune Checkpoint Programmed Cell-Death 1 Protein (Pd-1) Inducing Epithelial-To-Mesenchymal Transition (Emt) Through The Met Pathway And Promoting Cancer Progression In An Immune-Independent Process, Megan M. Harper

Theses and Dissertations--Clinical and Translational Science

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers with few treatment options, necessitating an urgent need for novel therapeutics. Immuno-oncologic (IO) therapies have revolutionized anti-cancer regimens in the past decade but typically involve reactivation of adaptive immune responses. In particular, immune checkpoint PD-1 is traditionally expressed only on immune cells while PD-L1 (PD-1 ligand) is overexpressed on cancer cells. When tumor-endogenous PD-L1 binds the PD-1 receptor on T-cells, the immune cells undergo anergy resulting in self-tolerance and cancer cell immune evasion. However, contrary to standard dogma, we previously demonstrated tumor-endogenous PD-1 expression in PDAC. Our data indicated that …


Untargeted Lipidomics Of Non-Small Cell Lung Carcinoma Demonstrates Differentially Abundant Lipid Classes In Cancer Vs. Non-Cancer Tissue, Joshua M. Mitchell, Robert M. Flight, Hunter N. B. Moseley Oct 2021

Untargeted Lipidomics Of Non-Small Cell Lung Carcinoma Demonstrates Differentially Abundant Lipid Classes In Cancer Vs. Non-Cancer Tissue, Joshua M. Mitchell, Robert M. Flight, Hunter N. B. Moseley

Molecular and Cellular Biochemistry Faculty Publications

Lung cancer remains the leading cause of cancer death worldwide and non-small cell lung carcinoma (NSCLC) represents 85% of newly diagnosed lung cancers. In this study, we utilized our untargeted assignment tool Small Molecule Isotope Resolved Formula Enumerator (SMIRFE) and ultra-high-resolution Fourier transform mass spectrometry to examine lipid profile differences between paired cancerous and non-cancerous lung tissue samples from 86 patients with suspected stage I or IIA primary NSCLC. Correlation and co-occurrence analysis revealed significant lipid profile differences between cancer and non-cancer samples. Further analysis of machine-learned lipid categories for the differentially abundant molecular formulas identified a high abundance sterol, …


Neurotensin Regulates Proliferation And Stem Cell Function In The Small Intestine In A Nutrient-Dependent Manner, Stephanie A. Rock, Kai Jiang, Yuanyuan Wu, Yajuan Liu, Jing Li, Heidi L. Weiss, Chi Wang, Jianhang Jia, Tianyan Gao, B. Mark Evers Sep 2021

Neurotensin Regulates Proliferation And Stem Cell Function In The Small Intestine In A Nutrient-Dependent Manner, Stephanie A. Rock, Kai Jiang, Yuanyuan Wu, Yajuan Liu, Jing Li, Heidi L. Weiss, Chi Wang, Jianhang Jia, Tianyan Gao, B. Mark Evers

Surgery Faculty Publications

BACKGROUND & AIMS: Intestinal stem cells (ISCs) are sensitive to dietary alterations and nutrient availability. Neurotensin (NT), a gut peptide localized predominantly to the small bowel and released by fat ingestion, stimulates the growth of intestinal mucosa under basal conditions and during periods of nutrient deprivation, suggesting a possible role for NT on ISC function.

METHODS: Leucine-rich repeat-containing G-protein coupled receptor 5-Enhanced Green Fluorescent Protein (Lgr5-EGFP) NT wild type (Nt+/+) and Lgr5-EGFP NT knockout (Nt-/-) mice were fed ad libitum or fasted for 48 hours. Small intestine tissue and crypts were examined by gene …


Innate Immune Activation By Checkpoint Inhibition In Human Patient-Derived Lung Cancer Tissues, Teresa W. M. Fan, Richard M. Higashi, Huan Song, Saeed Daneshmandi, Angela L. Mahan, Matthew S. Purdom, Therese J. Bocklage, Thomas A. Pittman, Daheng He, Chi Wang, Andrew N. Lane Aug 2021

Innate Immune Activation By Checkpoint Inhibition In Human Patient-Derived Lung Cancer Tissues, Teresa W. M. Fan, Richard M. Higashi, Huan Song, Saeed Daneshmandi, Angela L. Mahan, Matthew S. Purdom, Therese J. Bocklage, Thomas A. Pittman, Daheng He, Chi Wang, Andrew N. Lane

Center for Environmental and Systems Biochemistry Faculty Publications

Although Pembrolizumab-based immunotherapy has significantly improved lung cancer patient survival, many patients show variable efficacy and resistance development. A better understanding of the drug’s action is needed to improve patient outcomes. Functional heterogeneity of the tumor microenvironment (TME) is crucial to modulating drug resistance; understanding of individual patients’ TME that impacts drug response is hampered by lack of appropriate models. Lung organotypic tissue slice cultures (OTC) with patients’ native TME procured from primary and brain-metastasized (BM) non-small cell lung cancer (NSCLC) patients were treated with Pembrolizumab and/or beta-glucan (WGP, an innate immune activator). Metabolic tracing with 13C6-Glc/ …


Co-Targeting Plk1 And Dnmt3a In Advanced Prostate Cancer, Zhuangzhuang Zhang, Lijun Cheng, Qiongsi Zhang, Yifan Kong, Daheng He, Kunyu Li, Matthew Rea, Jianlin Wang, Ruixin Wang, Jinghui Liu, Zhiguo Li, Chongli Yuan, Enze Liu, Yvonne N. Fondufe-Mittendorf, Lang Li, Tao Han, Chi Wang, Xiaoqi Liu May 2021

Co-Targeting Plk1 And Dnmt3a In Advanced Prostate Cancer, Zhuangzhuang Zhang, Lijun Cheng, Qiongsi Zhang, Yifan Kong, Daheng He, Kunyu Li, Matthew Rea, Jianlin Wang, Ruixin Wang, Jinghui Liu, Zhiguo Li, Chongli Yuan, Enze Liu, Yvonne N. Fondufe-Mittendorf, Lang Li, Tao Han, Chi Wang, Xiaoqi Liu

Toxicology and Cancer Biology Faculty Publications

Because there is no effective treatment for late-stage prostate cancer (PCa) at this moment, identifying novel targets for therapy of advanced PCa is urgently needed. A new network-based systems biology approach, XDeath, is developed to detect crosstalk of signaling pathways associated with PCa progression. This unique integrated network merges gene causal regulation networks and protein-protein interactions to identify novel co-targets for PCa treatment. The results show that polo-like kinase 1 (Plk1) and DNA methyltransferase 3A (DNMT3a)-related signaling pathways are robustly enhanced during PCa progression and together they regulate autophagy as a common death mode. Mechanistically, it is shown that Plk1 …


Role Of Ampk And Akt In Triple Negative Breast Cancer Lung Colonization, Jeremy Johnson, Zeta Chow, Eun Young Lee, Heidi L. Weiss, B. Mark Evers, Piotr G. Rychahou Apr 2021

Role Of Ampk And Akt In Triple Negative Breast Cancer Lung Colonization, Jeremy Johnson, Zeta Chow, Eun Young Lee, Heidi L. Weiss, B. Mark Evers, Piotr G. Rychahou

Pathology and Laboratory Medicine Faculty Publications

Triple negative breast cancer (TNBC) is an aggressive disease with a 5-y relative survival rate of 11% after distant metastasis. To survive the metastatic cascade, tumor cells remodel their signaling pathways by regulating energy production and upregulating survival pathways. AMP-activated protein kinase (AMPK) and Akt regulate energy homeostasis and survival, however, the individual or synergistic role of AMPK and Akt isoforms during lung colonization by TNBC cells is unknown. The purpose of this study was to establish whether targeting Akt, AMPKα or both Akt and AMPKα isoforms in circulating cancer cells can suppress TNBC lung colonization. Transient silencing of Akt1 …


Early Satellite Cell Communication Creates A Permissive Environment For Long-Term Muscle Growth, Kevin A. Murach, Bailey D. Peck, Robert A. Policastro, Ivan J. Vechetti Jr., Douglas W. Van Pelt, Cory M. Dungan, Lance T. Denes, Xu Fu, Camille R. Brightwell, Gabriel E. Zentner, Esther E. Dupont-Versteegden, Christopher I. Richards, Jeramiah J. Smith, Christopher S. Fry, John J. Mccarthy, Charlotte A. Peterson Mar 2021

Early Satellite Cell Communication Creates A Permissive Environment For Long-Term Muscle Growth, Kevin A. Murach, Bailey D. Peck, Robert A. Policastro, Ivan J. Vechetti Jr., Douglas W. Van Pelt, Cory M. Dungan, Lance T. Denes, Xu Fu, Camille R. Brightwell, Gabriel E. Zentner, Esther E. Dupont-Versteegden, Christopher I. Richards, Jeramiah J. Smith, Christopher S. Fry, John J. Mccarthy, Charlotte A. Peterson

Center for Muscle Biology Faculty Publications

Using in vivo muscle stem cell (satellite cell)-specific extracellular vesicle (EV) tracking, satellite cell depletion, in vitro cell culture, and single-cell RNA sequencing, we show satellite cells communicate with other cells in skeletal muscle during mechanical overload. Early satellite cell EV communication primes the muscle milieu for proper long-term extracellular matrix (ECM) deposition and is sufficient to support sustained hypertrophy in adult mice, even in the absence of fusion to muscle fibers. Satellite cells modulate chemokine gene expression across cell types within the first few days of loading, and EV delivery of miR-206 to fibrogenic cells represses Wisp1 expression required …


Dna Repair Pathways In Cancer Therapy And Resistance, Lan-Ya Li, Yi-Di Guan, Xi-Sha Chen, Jin-Ming Yang, Yan Cheng Feb 2021

Dna Repair Pathways In Cancer Therapy And Resistance, Lan-Ya Li, Yi-Di Guan, Xi-Sha Chen, Jin-Ming Yang, Yan Cheng

Toxicology and Cancer Biology Faculty Publications

DNA repair pathways are triggered to maintain genetic stability and integrity when mammalian cells are exposed to endogenous or exogenous DNA-damaging agents. The deregulation of DNA repair pathways is associated with the initiation and progression of cancer. As the primary anti-cancer therapies, ionizing radiation and chemotherapeutic agents induce cell death by directly or indirectly causing DNA damage, dysregulation of the DNA damage response may contribute to hypersensitivity or resistance of cancer cells to genotoxic agents and targeting DNA repair pathway can increase the tumor sensitivity to cancer therapies. Therefore, targeting DNA repair pathways may be a potential therapeutic approach for …


Elucidating The Role Of The Tyrosine Phosphatase, Shp-2, In Regulation Of Pd-L1 Expression In Non-Small Lung Cancer Using Both Biochemical Analyses And Real-World Genomic Information, Keller Toral Jan 2021

Elucidating The Role Of The Tyrosine Phosphatase, Shp-2, In Regulation Of Pd-L1 Expression In Non-Small Lung Cancer Using Both Biochemical Analyses And Real-World Genomic Information, Keller Toral

Theses and Dissertations--Pharmacy

Immune checkpoint inhibitors (ICIs), especially those that target programmed cell death protein 1 (PD-1) and programmed cell death ligand-1 (PD-L1), have been shown to provide substantial clinical benefit in many patients with non-small cell lung cancer (NSCLC). While these therapeutic agents can be highly effective in the correct context, the biological systems that malignant cells draft from normal activities of the cell are poorly characterized. Tumor cell-specific expression of PD-L1 is likely important for clinical benefit from PD-1 and PD-L1 inhibitors. It is known that PD-L1 is inappropriately expressed in many cancers harboring mutations in the RAS family of genes. …


Cellular Bioenergetics Regulates Cell Proliferation During Mammalian Regeneration, Sandeep Saxena Jan 2021

Cellular Bioenergetics Regulates Cell Proliferation During Mammalian Regeneration, Sandeep Saxena

Theses and Dissertations--Biology

Mammalian system consists of stress-sensing molecules that regulates their cellular response against damage, injury and oncogenic stress. During vertebrate regeneration, cells responding to injury re-enter the cell cycle and proliferate to form new tissue. Cell cycle re-entry or arrest is at least partly regulated by cellular senescence which negatively impacts the proliferative pool of cells during regeneration. What remains unclear is whether cells in regenerating systems possess an increased propensity to proliferate and are refractory to signals that induce senescence. My thesis work has focused on how fibroblasts from the ear pinna differentially regulate healing in highly regenerative mammals (e.g., …


Human Regulatory T Cells Control Inflammation From Effector T Cells In Prediabetes, Rui Liu Jan 2021

Human Regulatory T Cells Control Inflammation From Effector T Cells In Prediabetes, Rui Liu

Theses and Dissertations--Pharmacy

Type 2 diabetes (T2D) is a chronic low-grade inflammatory disease. A T cell cytokine profile (Th17) from PBMCs can distinguish obese T2D from obese non-diabetes subjects. Individual T cell subsets interact with each other and the diverse subsets jointly determine overall inflammation. Cellular metabolism drives cytokine production of CD4+ T cells, and therefore contributes to inflammation in T2D. However, specific changes in metabolism and function of CD4+ T cells during the progression from lean healthy to obese and diabetic stages in people have not been clarified.

We hypothesize that human regulatory T cells (Treg) impact metabolism of effector …


Therapeutic Targeting Of Leukemia Stem Cells To Prevent T-Cell Acute Lymphoblastic Leukemia Relapse, Meghan G. Haney Jan 2021

Therapeutic Targeting Of Leukemia Stem Cells To Prevent T-Cell Acute Lymphoblastic Leukemia Relapse, Meghan G. Haney

Theses and Dissertations--Molecular and Cellular Biochemistry

The survival rate of T-cell Acute Lymphoblastic Leukemia (T-ALL) relapse is a dismal 10% of affected adults and 30% of children, largely due to the relapsed disease being more aggressive and treatment resistant than the initial disease. Relapse is thought to occur because conventional chemotherapies are unable to reliably eliminate a unique cell type known as leukemia stem (or propagating) cells (LSCs). LSCs are the only cells within the leukemia with the ability to self-renew and remake or replenish the ALL from a single cell. Currently, the pathways governing self-renewal in LSCs are largely unknown, precluding our ability to successfully …


Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee Jan 2021

Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee

Theses and Dissertations--Molecular and Cellular Biochemistry

Starch and glycogen are an essential component for the majority of species and have been developed to maintain homeostasis in response to environmental changes. Water-soluble glycogen is an excellent source of quick, short-term energy in response to energy demands. In contrast, plants and algae have developed the macromolecule starch that is elegantly suitable for their dependence on external circumstances. Semi-crystalline starch is water-insoluble and inaccessible to most amylolytic enzymes, thus plants and algae have developed a coordinated system so that these enzymes can gain access to the denser starch energy cache. Starch-like semi-crystalline polysaccharides are also found in red algae, …


Ceramide Analog [18F]F-Hpa-12 Detects Sphingolipid Disbalance In The Brain Of Alzheimer’S Disease Transgenic Mice By Functioning As A Metabolic Probe, Simone M. Crivelli, Daan Van Kruining, Qian Luo, Jo A. A. Stevens, Caterina Giovagnoni, Andreas Paulus, Matthias Bauwens, Dusan Berkes, Helga E. De Vries, Monique T. Mulder, Jochen Walter, Etienne Waelkens, Rita Derua, Johannes V. Swinnen, Jonas Dehairs, Felix M. Mottaghy, Mario Losen, Erhard Bieberich, Pilar Martinez-Martinez Nov 2020

Ceramide Analog [18F]F-Hpa-12 Detects Sphingolipid Disbalance In The Brain Of Alzheimer’S Disease Transgenic Mice By Functioning As A Metabolic Probe, Simone M. Crivelli, Daan Van Kruining, Qian Luo, Jo A. A. Stevens, Caterina Giovagnoni, Andreas Paulus, Matthias Bauwens, Dusan Berkes, Helga E. De Vries, Monique T. Mulder, Jochen Walter, Etienne Waelkens, Rita Derua, Johannes V. Swinnen, Jonas Dehairs, Felix M. Mottaghy, Mario Losen, Erhard Bieberich, Pilar Martinez-Martinez

Physiology Faculty Publications

The metabolism of ceramides is deregulated in the brain of Alzheimer’s disease (AD) patients and is associated with apolipoprotein (APO) APOE4 and amyloid-β pathology. However, how the ceramide metabolism changes over time in AD, in vivo, remains unknown. Distribution and metabolism of [18F]F-HPA-12, a radio-fluorinated version of the ceramide analog N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl) dodecanamide, was investigated in the brain of AD transgenic mouse models (FAD) on an APOE4 or APOE3 genetic background, by positron emission tomography and by gamma counter. We found that FAD mice displayed a higher uptake of [18F]F-HPA-12 in the brain, independently from the APOE4 …


Tdp-43 Mediated Blood-Brain Barrier Permeability And Leukocyte Infiltration Promote Neurodegeneration In A Low-Grade Systemic Inflammation Mouse Model, Frank Zamudio, Anjanet R. Loon, Shayna Smeltzer, Khawla Benyamine, Nanda K. Navalpur Shanmugam, Nicholas J. F. Stewart, Daniel C. Lee, Kevin Nash, Maj-Linda B. Selenica Sep 2020

Tdp-43 Mediated Blood-Brain Barrier Permeability And Leukocyte Infiltration Promote Neurodegeneration In A Low-Grade Systemic Inflammation Mouse Model, Frank Zamudio, Anjanet R. Loon, Shayna Smeltzer, Khawla Benyamine, Nanda K. Navalpur Shanmugam, Nicholas J. F. Stewart, Daniel C. Lee, Kevin Nash, Maj-Linda B. Selenica

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: Neuronal cytoplasmic inclusions containing TAR DNA-binding protein 43 (TDP-43) are a neuropathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's Disease (AD). Emerging evidence also indicates that systemic inflammation may be a contributor to the pathology progression of these neurodegenerative diseases.

METHODS: To investigate the role of systemic inflammation in the progression of neuronal TDP-43 pathology, AAV9 particles driven by the UCHL1 promoter were delivered to the frontal cortex of wild-type aged mice via intracranial injections to overexpress TDP-43 or green fluorescent protein (GFP) in corticospinal motor neurons. Animals were then subjected …


Rho Gtpases: Big Players In Breast Cancer Initiation, Metastasis And Therapeutic Responses, Brock Humphries, Zhishan Wang, Chengfeng Yang Sep 2020

Rho Gtpases: Big Players In Breast Cancer Initiation, Metastasis And Therapeutic Responses, Brock Humphries, Zhishan Wang, Chengfeng Yang

Toxicology and Cancer Biology Faculty Publications

Rho GTPases, a family of the Ras GTPase superfamily, are key regulators of the actin cytoskeleton. They were originally thought to primarily affect cell migration and invasion; however, recent advances in our understanding of the biology and function of Rho GTPases have demonstrated their diverse roles within the cell, including membrane trafficking, gene transcription, migration, invasion, adhesion, survival and growth. As these processes are critically involved in cancer initiation, metastasis and therapeutic responses, it is not surprising that studies have demonstrated important roles of Rho GTPases in cancer. Although the majority of data indicates an oncogenic role of Rho GTPases, …


Upregulation Of Cpt1a Is Essential For The Tumor-Promoting Effect Of Adipocytes In Colon Cancer, Xiaopeng Xiong, Yang-An Wen, Rachelle Fairchild, Yekaterina Y. Zaytseva, Heidi L. Weiss, B. Mark Evers, Tianyan Gao Sep 2020

Upregulation Of Cpt1a Is Essential For The Tumor-Promoting Effect Of Adipocytes In Colon Cancer, Xiaopeng Xiong, Yang-An Wen, Rachelle Fairchild, Yekaterina Y. Zaytseva, Heidi L. Weiss, B. Mark Evers, Tianyan Gao

Markey Cancer Center Faculty Publications

Colon tumors grow in an adipose tissue-enriched microenvironment. Locally advanced colon cancers often invade into surrounding adipose tissue with a direct contact with adipocytes. We have previously shown that adipocytes promote tumor growth by modulating cellular metabolism. Here we demonstrate that carnitine palmitoyltransferase I (CPT1A), a key enzyme controlling fatty acid oxidation (FAO), was upregulated in colon cancer cells upon exposure to adipocytes or fatty acids. In addition, CPT1A expression was increased in invasive tumor cells within the adipose tissue compared to tumors without direct contact with adipocytes. Silencing CPT1A abolished the protective effect provided by fatty acids against nutrient …


Develop A High-Throughput Screening Method To Identify C-P4h1 (Collagen Prolyl 4-Hydroxylase 1) Inhibitors From Fda-Approved Chemicals, Shike Wang, Kuo-Hao Lee, Nathália Victoria Araujo, Chang-Guo Zhan, Vivek M. Rangnekar, Ren Xu Sep 2020

Develop A High-Throughput Screening Method To Identify C-P4h1 (Collagen Prolyl 4-Hydroxylase 1) Inhibitors From Fda-Approved Chemicals, Shike Wang, Kuo-Hao Lee, Nathália Victoria Araujo, Chang-Guo Zhan, Vivek M. Rangnekar, Ren Xu

Pharmaceutical Sciences Faculty Publications

Collagen prolyl 4-hydroxylase 1 (C-P4H1) is an α-ketoglutarate (α-KG)-dependent dioxygenase that catalyzes 4-hydroxylation of proline on collagen. C-P4H1-induced prolyl hydroxylation is required for proper collagen deposition and cancer metastasis. Therefore, targeting C-P4H1 is considered a potential therapeutic strategy for collagen-related cancer progression and metastasis. However, no C-P4H1 inhibitors are available for clinical testing, and the high content assay is currently not available for C-P4H1 inhibitor screening. In the present study, we developed a high-throughput screening assay by quantifying succinate, a byproduct of C-P4H-catalyzed hydroxylation. C-P4H1 is the major isoform of collagen prolyl 4-hydroxylases (CP4Hs) that contributes the majority prolyl 4-hydroxylase …


Igf-1r Inhibition Induces Mek Phosphorylation To Promote Survival In Colon Carcinomas, Qing Wang, Yan Zhang, Jiang Zhu, Honggang Zheng, Shuntai Chen, Li Chen, Hsin-Sheng Yang Aug 2020

Igf-1r Inhibition Induces Mek Phosphorylation To Promote Survival In Colon Carcinomas, Qing Wang, Yan Zhang, Jiang Zhu, Honggang Zheng, Shuntai Chen, Li Chen, Hsin-Sheng Yang

Toxicology and Cancer Biology Faculty Publications

The insulin-like growth factor 1 receptor (IGF-1R) governs several signaling pathways for cell proliferation, survival, and anti-apoptosis. Thus, targeting IGF-1R appears as a reasonable rationale for tumor treatment. However, clinical studies showed that inhibition of IGF-1R has very limited efficacy due to the development of resistance to IGF-1R blockade in tumor cells. Here, we discovered that prolonged treatment of colon cancer cells with IGF-1R inhibitors (BMS-754807 and GSK1838705A) stimulates p70 KDa ribosomal protein S6 kinase 1 (p70S6K1) activation, a well-known kinase signaling for cell survival. We also found that p70S6K1 activation by IGF-1R inhibition is independent of K-Ras and PIK3CA …


Palbociclib Treatment Alters Nucleotide Biosynthesis And Glutamine Dependency In A549 Cells, Lindsey R. Conroy, Pawel Lorkiewicz, Liqing He, Xinmin Yin, Xiang Zhang, Shesh N. Rai, Brian F. Clem Jul 2020

Palbociclib Treatment Alters Nucleotide Biosynthesis And Glutamine Dependency In A549 Cells, Lindsey R. Conroy, Pawel Lorkiewicz, Liqing He, Xinmin Yin, Xiang Zhang, Shesh N. Rai, Brian F. Clem

Neuroscience Faculty Publications

Background

Aberrant activity of cell cycle proteins is one of the key somatic events in non-small cell lung cancer (NSCLC) pathogenesis. In most NSCLC cases, the retinoblastoma protein tumor suppressor (RB) becomes inactivated via constitutive phosphorylation by cyclin dependent kinase (CDK) 4/6, leading to uncontrolled cell proliferation. Palbociclib, a small molecule inhibitor of CDK4/6, has shown anti-tumor activity in vitro and in vivo, with recent studies demonstrating a functional role for palbociclib in reprogramming cellular metabolism. While palbociclib has shown efficacy in preclinical models of NSCLC, the metabolic consequences of CDK4/6 inhibition in this context are largely unknown.

Methods

In …


Hsp47 Promotes Cancer Metastasis By Enhancing Collagen-Dependent Cancer Cell-Platelet Interaction, Gaofeng Xiong, Jie Chen, Guoying Zhang, Shike Wang, Kunito Kawasaki, Jieqing Zhu, Yan Zhang, Kazuhiro Nagata, Zhenyu Li, Binhua P. Zhou, Ren Xu Feb 2020

Hsp47 Promotes Cancer Metastasis By Enhancing Collagen-Dependent Cancer Cell-Platelet Interaction, Gaofeng Xiong, Jie Chen, Guoying Zhang, Shike Wang, Kunito Kawasaki, Jieqing Zhu, Yan Zhang, Kazuhiro Nagata, Zhenyu Li, Binhua P. Zhou, Ren Xu

Markey Cancer Center Faculty Publications

Increased expression of extracellular matrix (ECM) proteins in circulating tumor cells (CTCs) suggests potential function of cancer cell-produced ECM in initiation of cancer cell colonization. Here, we showed that collagen and heat shock protein 47 (Hsp47), a chaperone facilitating collagen secretion and deposition, were highly expressed during the epithelial-mesenchymal transition (EMT) and in CTCs. Hsp47 expression induced mesenchymal phenotypes in mammary epithelial cells (MECs), enhanced platelet recruitment, and promoted lung retention and colonization of cancer cells. Platelet depletion in vivo abolished Hsp47-induced cancer cell retention in the lung, suggesting that Hsp47 promotes cancer cell colonization by enhancing cancer cell–platelet interaction. …


Comparative Chondrogenesis Of Interzone And Anlagen Cells In Equine Skeletal Development, Chanhee Mok Jan 2020

Comparative Chondrogenesis Of Interzone And Anlagen Cells In Equine Skeletal Development, Chanhee Mok

Theses and Dissertations--Veterinary Science

At the presumptive sites of future synovial joints during mammalian skeletogenesis, articular cartilage develops from interzone located between the cartilaginous anlagen of bones. Thus, two types of cartilaginous tissues differentiate in close proximity. While anlagen cartilage is transient, progressing through endochondral ossification to form bones, articular cartilage is stable and functions throughout life to facilitate both low friction movement and load distribution. Despite important life-long functional properties, articular cartilage has a very limited intrinsic ability to repair structural defects. On the other hand, structural lesions in bones generally heal well by forming a cartilaginous callus and recapitulating endochondral ossification to …


Donor Age Effects On The Proliferative And Chondrogenic/Osteogenic Differentiation Performance Of Equine Bone Marrow- And Adipose Tissue Derived Mesenchymal Stem Cells In Culture, Jasmin Bagge Jan 2020

Donor Age Effects On The Proliferative And Chondrogenic/Osteogenic Differentiation Performance Of Equine Bone Marrow- And Adipose Tissue Derived Mesenchymal Stem Cells In Culture, Jasmin Bagge

Theses and Dissertations--Veterinary Science

Orthopedic injuries are a major cause of lameness and morbidity in horses. Bone marrow (BM)- and adipose tissue (AT) derived mesenchymal stem cells (MSCs) have shown potential to facilitate the repair of orthopedic injuries and are being used increasingly in veterinary clinics. Presently, the use of MSCs as a therapy for equine patients is most commonly applied as autologous transplants, using BM- and AT-MSCs harvested from the patient shortly after the time of injury. Cell-based therapies are therefore delayed to enable primary cell numbers to be expanded in culture. Of concern, however, are human and rodent studies that have shown …


Combination Of Investigational Cell-Based Therapy And Deep Brain Stimulation To Alter The Progression Of Parkinson’S Disease, Nader El Seblani Jan 2020

Combination Of Investigational Cell-Based Therapy And Deep Brain Stimulation To Alter The Progression Of Parkinson’S Disease, Nader El Seblani

Theses and Dissertations--Pharmacy

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and the motor symptoms are caused by progressive loss of midbrain dopamine neurons. There is no current treatment that can slow or reverse PD. Our current “DBS-Plus” clinical trial (NCT02369003) features the implantation in vivo of autologous Schwann cells (SCs) derived from a patient’s sural nerve into the substantia nigra pars compacta (SNpc) in combination with Deep Brain Stimulation (DBS) therapy for treating patients with advanced PD.

The central hypothesis of our research is that transdifferentiated SCs within conditioned nerve tissue will deliver pro-regenerative factors to enhance the survival of …


Phenylethynyl-Substituted Benzenes And Heterocycles For The Treatment Of Cancer, David S. Watt, Chunming Liu, Vitaliy M. Sviripa, Wen Zhang, Markos Leggas Oct 2019

Phenylethynyl-Substituted Benzenes And Heterocycles For The Treatment Of Cancer, David S. Watt, Chunming Liu, Vitaliy M. Sviripa, Wen Zhang, Markos Leggas

Molecular and Cellular Biochemistry Faculty Patents

Halogenated phenylethynyl-substituted heterocycles that possess either an N-alkylamino or N,N-dialkylamino group attached to the heterocycle or halogenated phenylethynyl-substituted benzenes that a nitrogen-containing heterocycle attached to the benzene inhibit the proliferation cancer cells and are useful antineoplastic agents.


Metformin Blunts Muscle Hypertrophy In Response To Progressive Resistance Exercise Training In Older Adults: A Randomized, Double‐Blind, Placebo‐Controlled, Multicenter Trial: The Masters Trial, R. Grace Walton, Cory M. Dungan, Douglas E. Long, S. Craig Tuggle, Kate Kosmac, Bailey D. Peck, Heather M. Bush, Alejandro G. Villasante Tezanos, Gerald Mcgwin, Samuel T. Windham, Fernando Ovalle, Marcas M. Bamman, Philip A. Kern, Charlotte A. Peterson Sep 2019

Metformin Blunts Muscle Hypertrophy In Response To Progressive Resistance Exercise Training In Older Adults: A Randomized, Double‐Blind, Placebo‐Controlled, Multicenter Trial: The Masters Trial, R. Grace Walton, Cory M. Dungan, Douglas E. Long, S. Craig Tuggle, Kate Kosmac, Bailey D. Peck, Heather M. Bush, Alejandro G. Villasante Tezanos, Gerald Mcgwin, Samuel T. Windham, Fernando Ovalle, Marcas M. Bamman, Philip A. Kern, Charlotte A. Peterson

Center for Muscle Biology Faculty Publications

Progressive resistance exercise training (PRT) is the most effective known intervention for combating aging skeletal muscle atrophy. However, the hypertrophic response to PRT is variable, and this may be due to muscle inflammation susceptibility. Metformin reduces inflammation, so we hypothesized that metformin would augment the muscle response to PRT in healthy women and men aged 65 and older. In a randomized, double-blind trial, participants received 1,700 mg/day metformin (N = 46) or placebo (N = 48) throughout the study, and all subjects performed 14 weeks of supervised PRT. Although responses to PRT varied, placebo gained more lean body …


Phospholipases D: Making Sense Of Redundancy And Duplication, Andrew J. Morris Jun 2019

Phospholipases D: Making Sense Of Redundancy And Duplication, Andrew J. Morris

Internal Medicine Faculty Publications

Why have two genes when one would suffice? Evolutionary pressure means that biology, unlike government, is generally intolerant of wasted effort. Therefore, when multiple genes exist presumably they are there to provide some benefit to the organism even if that benefit is not immediately obvious to us scientists. A recent report from Raghu and colleagues (Biosci. Rep. (2018) 38, pii: BSR20181690) [1] sheds some light on one possible reason for the existence of two Phospholipases D genes in chordates when only one is present in invertebrates.