Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Medicine and Health Sciences

Star-Related Lipid Transfer Protein 10 (Stard10): A Novel Key Player In Alcohol-Induced Breast Cancer Progression, Andrea Floris, Jia Luo, Jacqueline A. Frank, Jennifer Zhou, Sandro Orrù, Michela Biancolella, Sabina Pucci, Augusto Orlandi, Paolo Campagna, Antonella Balzano, Komal Ramani, Maria Lauda Tomasi Jan 2019

Star-Related Lipid Transfer Protein 10 (Stard10): A Novel Key Player In Alcohol-Induced Breast Cancer Progression, Andrea Floris, Jia Luo, Jacqueline A. Frank, Jennifer Zhou, Sandro Orrù, Michela Biancolella, Sabina Pucci, Augusto Orlandi, Paolo Campagna, Antonella Balzano, Komal Ramani, Maria Lauda Tomasi

Pharmacology and Nutritional Sciences Faculty Publications

Background: Ethanol abuse promotes breast cancer development, metastasis and recurrence stimulating mammary tumorigenesis by mechanisms that remain unclear. Normally, 35% of breast cancer is Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2)-positive that predisposes to poor prognosis and relapse, while ethanol drinking leads to invasion of their ERBB2 positive cells triggering the phosphorylation status of mitogen-activated protein kinase. StAR-related lipid transfer protein 10 (STARD10) is a lipid transporter of phosphatidylcholine (PC) and phosphatidylethanolamine (PE); changes on membrane composition of PC and PE occur before the morphological tumorigenic events. Interestingly, STARD10 has been described to be highly expressed in 35–40% of ERBB2-positive breast …


Targeting The Brd4/Foxo3a/Cdk6 Axis Sensitizes Akt Inhibition In Luminal Breast Cancer, Jingyi Liu, Weijie Guo, Zhibing Duan, Lei Zeng, Yadi Wu, Yule Chen, Fang Tai, Yifan Wang, Yiwei Lin, Qiang Zhang, Yanling He, Jiong Deng, Rachel L. Stewart, Chi Wang, Pengnian Charles Lin, Saghi Ghaffari, B. Mark Evers, Suling Liu, Ming-Ming Zhou, Binhua P. Zhou, Jian Shi Dec 2018

Targeting The Brd4/Foxo3a/Cdk6 Axis Sensitizes Akt Inhibition In Luminal Breast Cancer, Jingyi Liu, Weijie Guo, Zhibing Duan, Lei Zeng, Yadi Wu, Yule Chen, Fang Tai, Yifan Wang, Yiwei Lin, Qiang Zhang, Yanling He, Jiong Deng, Rachel L. Stewart, Chi Wang, Pengnian Charles Lin, Saghi Ghaffari, B. Mark Evers, Suling Liu, Ming-Ming Zhou, Binhua P. Zhou, Jian Shi

Molecular and Cellular Biochemistry Faculty Publications

BRD4 assembles transcriptional machinery at gene super-enhancer regions and governs the expression of genes that are critical for cancer progression. However, it remains unclear whether BRD4-mediated gene transcription is required for tumor cells to develop drug resistance. Our data show that prolonged treatment of luminal breast cancer cells with AKT inhibitors induces FOXO3a dephosphorylation, nuclear translocation, and disrupts its association with SirT6, eventually leading to FOXO3a acetylation as well as BRD4 recognition. Acetylated FOXO3a recognizes the BD2 domain of BRD4, recruits the BRD4/RNAPII complex to the CDK6 gene promoter, and induces its transcription. Pharmacological inhibition of either BRD4/FOXO3a association or …


Beta-Catenin Cleavage Enhances Transcriptional Activation, Tatiana Goretsky, Emily M. Bradford, Qing Ye, Olivia F. Lamping, Tomas Vanagunas, Mary Pat Moyer, Patrick C. Keller, Preetika Sinh, Josep M. Llovet, Tianyan Gao, Qing-Bai She, Linheng Li, Terrence A. Barrett Jan 2018

Beta-Catenin Cleavage Enhances Transcriptional Activation, Tatiana Goretsky, Emily M. Bradford, Qing Ye, Olivia F. Lamping, Tomas Vanagunas, Mary Pat Moyer, Patrick C. Keller, Preetika Sinh, Josep M. Llovet, Tianyan Gao, Qing-Bai She, Linheng Li, Terrence A. Barrett

Internal Medicine Faculty Publications

Nuclear activation of Wnt/β-catenin signaling is required for cell proliferation in inflammation and cancer. Studies from our group indicate that β-catenin activation in colitis and colorectal cancer (CRC) correlates with increased nuclear levels of β-catenin phosphorylated at serine 552 (pβ-Cat552). Biochemical analysis of nuclear extracts from cancer biopsies revealed the existence of low molecular weight (LMW) pβ-Cat552, increased to the exclusion of full size (FS) forms of β-catenin. LMW β-catenin lacks both termini, leaving residues in the armadillo repeat intact. Further experiments showed that TCF4 predominantly binds LMW pβ-Cat552 in the nucleus of inflamed and …


Nanoparticle Orientation To Control Rna Loading And Ligand Display On Extracellular Vesicles For Cancer Regression, Fengmei Pi, Daniel W. Binzel, Tae Jin Lee, Zhefeng Li, Meiyan Sun, Piotr G. Rychahou, Hui Li, Farzin Haque, Shaoying Wang, Carlo M. Croce, Bin Guo, B. Mark Evers, Peixuan Guo Jan 2018

Nanoparticle Orientation To Control Rna Loading And Ligand Display On Extracellular Vesicles For Cancer Regression, Fengmei Pi, Daniel W. Binzel, Tae Jin Lee, Zhefeng Li, Meiyan Sun, Piotr G. Rychahou, Hui Li, Farzin Haque, Shaoying Wang, Carlo M. Croce, Bin Guo, B. Mark Evers, Peixuan Guo

Markey Cancer Center Faculty Publications

Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for …


Tumor Suppressor Pdcd4 Attenuates Sin1 Translation To Inhibit Invasion In Colon Carcinoma, Qing Wang, Jiang Zhu, Ya-Wen Wang, Yong Dai, Yanlei Wang, Chi Wang, Jinpeng Liu, Alyson Baker, Nancy H. Colburn, Hsin-Sheng Yang Nov 2017

Tumor Suppressor Pdcd4 Attenuates Sin1 Translation To Inhibit Invasion In Colon Carcinoma, Qing Wang, Jiang Zhu, Ya-Wen Wang, Yong Dai, Yanlei Wang, Chi Wang, Jinpeng Liu, Alyson Baker, Nancy H. Colburn, Hsin-Sheng Yang

Toxicology and Cancer Biology Faculty Publications

Programmed cell death 4 (Pdcd4), a tumor invasion suppressor, is frequently downregulated in colorectal cancer and other cancers. In this study, we find that loss of Pdcd4 increases the activity of mammalian target of rapamycin complex 2 (mTORC2) and thereby upregulates Snail expression. Examining the components of mTORC2 showed that Pdcd4 knockdown increased the protein but not mRNA level of stress-activated-protein kinase interacting protein 1 (Sin1), which resulted from enhanced Sin1 translation. To understand how Pdcd4 regulates Sin1 translation, the SIN1 5′ untranslated region (5′UTR) was fused with luciferase reporter and named as 5′Sin1-Luc. Pdcd4 knockdown/knockout significantly increased the translation …


Abl Kinase Regulation By Braf/Erk And Cooperation With Akt In Melanoma, Aditi Jain, Rakshamani Tripathi, Courtney P. Turpin, Chi Wang, Rina Plattner Aug 2017

Abl Kinase Regulation By Braf/Erk And Cooperation With Akt In Melanoma, Aditi Jain, Rakshamani Tripathi, Courtney P. Turpin, Chi Wang, Rina Plattner

Pharmacology and Nutritional Sciences Faculty Publications

The melanoma incidence continues to increase, and the disease remains incurable for many due to its metastatic nature and high rate of therapeutic resistance. In particular, melanomas harboring BRAFV600E and PTEN mutations often are resistant to current therapies, including BRAF inhibitors (BRAFi) and immune checkpoint inhibitors. Abl kinases (Abl/Arg) are activated in melanomas and drive progression; however, their mechanism of activation has not been established. Here we elucidate a novel link between BRAFV600E/ERK signaling and Abl kinases. We demonstrate that BRAFV600E/ERK play a critical role in binding, phosphorylating and regulating Abl localization and Abl/Arg activation …


A Naturally Generated Decoy Of The Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance In Tumors, Nikhil Hebbar, Ravshan Burikhanov, Nidhi Shukla, Shirley Qiu, Yanming Zhao, Kojo S. J. Elenitoba-Johnson, Vivek M. Rangnekar Aug 2017

A Naturally Generated Decoy Of The Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance In Tumors, Nikhil Hebbar, Ravshan Burikhanov, Nidhi Shukla, Shirley Qiu, Yanming Zhao, Kojo S. J. Elenitoba-Johnson, Vivek M. Rangnekar

Radiation Medicine Faculty Publications

Primary tumors are often heterogeneous, composed of therapy-sensitive and emerging therapy-resistant cancer cells. Interestingly, treatment of therapy-sensitive tumors in heterogeneous tumor microenvironments results in apoptosis of therapy-resistant tumors. In this study, we identify a prostate apoptosis response-4 (Par-4) amino-terminal fragment (PAF) that is released by diverse therapy-sensitive cancer cells following therapy-induced caspase cleavage of the tumor suppressor Par-4 protein. PAF caused apoptosis in cancer cells resistant to therapy and inhibited tumor growth. A VASA segment of Par-4 mediated its binding and degradation by the ubiquitin ligase Fbxo45, resulting in loss of Par-4 proapoptotic function. Conversely, PAF, which contains this VASA …


Chloroformate Derivatization For Tracing The Fate Of Amino Acids In Cells And Tissues By Multiple Stable Isotope Resolved Metabolomics (Msirm), Ye Yang, Teresa W. -M. Fan, Andrew N. Lane, Richard M. Higashi Jul 2017

Chloroformate Derivatization For Tracing The Fate Of Amino Acids In Cells And Tissues By Multiple Stable Isotope Resolved Metabolomics (Msirm), Ye Yang, Teresa W. -M. Fan, Andrew N. Lane, Richard M. Higashi

Center for Environmental and Systems Biochemistry Faculty Publications

Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different …


Divergence Of Camp Signalling Pathways Mediating Augmented Nucleotide Excision Repair And Pigment Induction In Melanocytes, Erin M. Wolf Horrell, Stuart G. Jarrett, Katharine M. Carter, John A. D'Orazio Jul 2017

Divergence Of Camp Signalling Pathways Mediating Augmented Nucleotide Excision Repair And Pigment Induction In Melanocytes, Erin M. Wolf Horrell, Stuart G. Jarrett, Katharine M. Carter, John A. D'Orazio

Markey Cancer Center Faculty Publications

Loss‐of‐function melanocortin 1 receptor (MC1R) polymorphisms are common in UV‐sensitive fair‐skinned individuals and are associated with blunted cAMP second messenger signalling and higher lifetime risk of melanoma because of diminished ability of melanocytes to cope with UV damage. cAMP signalling positions melanocytes to resist UV injury by upregulating synthesis of UV‐blocking eumelanin pigment and by enhancing the repair of UV‐induced DNA damage. cAMP enhances melanocyte nucleotide excision repair (NER), the genome maintenance pathway responsible for the removal of mutagenic UV photolesions, through cAMP‐activated protein kinase (protein kinase A)‐mediated phosphorylation of the ataxia telangiectasia‐mutated and Rad3‐related (ATR) protein on the S435 …


Temperature Induces Significant Changes In Both Glycolytic Reserve And Mitochondrial Spare Respiratory Capacity In Colorectal Cancer Cell Lines, Mihail I. Mitov, Jennifer W. Harris, Michael Alstott, Yekaterina Y. Zaytseva, B. Mark Evers, D. Allan Butterfield May 2017

Temperature Induces Significant Changes In Both Glycolytic Reserve And Mitochondrial Spare Respiratory Capacity In Colorectal Cancer Cell Lines, Mihail I. Mitov, Jennifer W. Harris, Michael Alstott, Yekaterina Y. Zaytseva, B. Mark Evers, D. Allan Butterfield

Markey Cancer Center Faculty Publications

Thermotherapy, as a method of treating cancer, has recently attracted considerable attention from basic and clinical investigators. A number of studies and clinical trials have shown that thermotherapy can be successfully used as a therapeutic approach for various cancers. However, the effects of temperature on cancer bioenergetics have not been studied in detail with a real time, in a microplate, label-free detection approach.

This study investigate how changes in temperature affect the bioenergetics characteristics (mitochondrial function and glycolysis) of three colorectal cancer (CRC) cell lines utilizing the Seahorse XF96 technology. Experiments were performed at 32°C, 37°C and 42°C using assay …


Crispr-Cas9 Mediated Nox4 Knockout Inhibits Cell Proliferation And Invasion In Hela Cells, Naser Jafari, Hyunju Kim, Rackhyun Park, Liqing Li, Minsu Jang, Andrew J. Morris, Junsoo Park, Cai Huang Jan 2017

Crispr-Cas9 Mediated Nox4 Knockout Inhibits Cell Proliferation And Invasion In Hela Cells, Naser Jafari, Hyunju Kim, Rackhyun Park, Liqing Li, Minsu Jang, Andrew J. Morris, Junsoo Park, Cai Huang

Markey Cancer Center Faculty Publications

Increased expression of NOX4 protein is associated with cancer progression and metastasis but the role of NOX4 in cell proliferation and invasion is not fully understood. We generated NOX4 knockout HeLa cell lines using the CRISPR-Cas9 gene editing system to explore the cellular functions of NOX4. After transfection of CRISPR-Cas9 construct, we performed T7 endonuclease 1 assays and DNA sequencing to generate and identify insertion and deletion of the NOX4 locus. We confirmed the knockout of NOX4 by Western blotting. NOX4 knockout cell lines showed reduced cell proliferation with an increase of sub-G1 cell population and the decrease of S/G2/M …


Talin2-Mediated Traction Force Drives Matrix Degradation And Cell Invasion, Lei Qi, Naser Jafari, Xiang Li, Zaozao Chen, Liqing Li, Vesa P. Hytönen, Benjamin T. Goult, Chang-Guo Zhan, Cai Huang Oct 2016

Talin2-Mediated Traction Force Drives Matrix Degradation And Cell Invasion, Lei Qi, Naser Jafari, Xiang Li, Zaozao Chen, Liqing Li, Vesa P. Hytönen, Benjamin T. Goult, Chang-Guo Zhan, Cai Huang

Markey Cancer Center Faculty Publications

Talin binds to β-integrin tails to activate integrins, regulating cell migration, invasion and metastasis. There are two talin genes, TLN1 and TLN2, encoding talin1 and talin2, respectively. Talin1 regulates focal adhesion dynamics, cell migration and invasion, whereas the biological function of talin2 is not clear and, indeed, talin2 has been presumed to function redundantly with talin1. Here, we show that talin2 has a much stronger binding to β-integrin tails than talin1. Replacement of talin2 Ser339 with Cys significantly decreased its binding to β1-integrin tails to a level comparable to that of talin1. Talin2 localizes at invadopodia and is indispensable …


P-Rex1 Promotes Resistance To Vegf/Vegfr-Targeted Therapy In Prostate Cancer, Hira Lal Goel, Bryan Pursell, Leonard D. Shultz, Dale L. Greiner, Rolf A Brekken, Craig W. Vander Kooi, Arthur M. Mercurio Mar 2016

P-Rex1 Promotes Resistance To Vegf/Vegfr-Targeted Therapy In Prostate Cancer, Hira Lal Goel, Bryan Pursell, Leonard D. Shultz, Dale L. Greiner, Rolf A Brekken, Craig W. Vander Kooi, Arthur M. Mercurio

Molecular and Cellular Biochemistry Faculty Publications

Autocrine VEGF signaling is critical for sustaining prostate and other cancer stem cells (CSCs), and it is a potential therapeutic target, but we observed that CSCs isolated from prostate tumors are resistant to anti-VEGF (bevacizumab) and anti-VEGFR (sunitinib) therapy. Intriguingly, resistance is mediated by VEGF/neuropilin signaling, which is not inhibited by bevacizumab and sunitinib, and it involves the induction of P-Rex1, a Rac GEF, and consequent Rac1-mediated ERK activation. This induction of P-Rex1 is dependent on Myc. CSCs isolated from the PTENpc−/− transgenic model of prostate cancer exhibit Rac1-dependent resistance to bevacizumab. Rac1 inhibition or P-Rex1 downregulation increases the …


Integrin Α6Β4 Promotes Autocrine Epidermal Growth Factor Receptor (Egfr) Signaling To Stimulate Migration And Invasion Toward Hepatocyte Growth Factor (Hgf), Brittany L. Carpenter, Min Chen, Teresa Knifley, Kelley A. Davis, Susan M.W. Harrison, Rachel L. Stewart, Kathleen O'Connor Nov 2015

Integrin Α6Β4 Promotes Autocrine Epidermal Growth Factor Receptor (Egfr) Signaling To Stimulate Migration And Invasion Toward Hepatocyte Growth Factor (Hgf), Brittany L. Carpenter, Min Chen, Teresa Knifley, Kelley A. Davis, Susan M.W. Harrison, Rachel L. Stewart, Kathleen O'Connor

Markey Cancer Center Faculty Publications

Integrin α6β4 is up-regulated in pancreatic adenocarcinomas where it contributes to carcinoma cell invasion by altering the transcriptome. In this study, we found that integrin α6β4 up-regulates several genes in the epidermal growth factor receptor (EGFR) pathway, including amphiregulin (AREG), epiregulin (EREG), and ectodomain cleavage protease MMP1, which is mediated by promoter demethylation and NFAT5. The correlation of these genes with integrin α6β4 was confirmed in The Cancer Genome Atlas Pancreatic Cancer Database. Based on previous observations that integrin α6β4 cooperates with c-Met in pancreatic cancers, we examined the impact of EGFR signaling on hepatocyte growth factor (HGF)-stimulated migration and …


Increased Expression Of Fatty Acid Synthase Provides A Survival Advantage To Colorectal Cancer Cells Via Upregulation Of Cellular Respiration, Yekaterina Y. Zaytseva, Jennifer W. Harris, Mihail I. Mitov, Ji Tae Kim, D. Allan Butterfield, Eun Young Lee, Heidi L. Weiss, Tianyan Gao, B. Mark Evers Aug 2015

Increased Expression Of Fatty Acid Synthase Provides A Survival Advantage To Colorectal Cancer Cells Via Upregulation Of Cellular Respiration, Yekaterina Y. Zaytseva, Jennifer W. Harris, Mihail I. Mitov, Ji Tae Kim, D. Allan Butterfield, Eun Young Lee, Heidi L. Weiss, Tianyan Gao, B. Mark Evers

Markey Cancer Center Faculty Publications

Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC. We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and maintain energy homeostasis. Increased FASN expression is associated with a decrease in activation of energy-sensing pathways and accumulation of lipid droplets in CRC cells …


Tsc2/Mtorc1 Signaling Controls Paneth And Goblet Cell Differentiation In The Intestinal Epithelium, Y. Zhou, Piotr G. Rychahou, Q. Wang, Heidi L. Weiss, B. Mark Evers Feb 2015

Tsc2/Mtorc1 Signaling Controls Paneth And Goblet Cell Differentiation In The Intestinal Epithelium, Y. Zhou, Piotr G. Rychahou, Q. Wang, Heidi L. Weiss, B. Mark Evers

Markey Cancer Center Faculty Publications

The intestinal mucosa undergoes a continual process of proliferation, differentiation and apoptosis, which is regulated by multiple signaling pathways. Notch signaling is critical for the control of intestinal stem cell maintenance and differentiation. However, the precise mechanisms involved in the regulation of differentiation are not fully understood. Previously, we have shown that tuberous sclerosis 2 (TSC2) positively regulates the expression of the goblet cell differentiation marker, MUC2, in intestinal cells. Using transgenic mice constitutively expressing a dominant negative TSC2 allele, we observed that TSC2 inactivation increased mTORC1 and Notch activities, and altered differentiation throughout the intestinal epithelium, with a marked …


Fructose-2,6-Bisphosphate Synthesis By 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase 4 (Pfkfb4) Is Required For The Glycolytic Response To Hypoxia And Tumor Growth, Jason Chesney, Jennifer Clark, Alden C. Klarer, Yoannis Imbert-Fernandez, Andrew N. Lane, Sucheta Telang Aug 2014

Fructose-2,6-Bisphosphate Synthesis By 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase 4 (Pfkfb4) Is Required For The Glycolytic Response To Hypoxia And Tumor Growth, Jason Chesney, Jennifer Clark, Alden C. Klarer, Yoannis Imbert-Fernandez, Andrew N. Lane, Sucheta Telang

Markey Cancer Center Faculty Publications

Fructose-2,6-bisphosphate (F2,6BP) is a shunt product of glycolysis that allosterically activates 6-phosphofructo-1-kinase (PFK-1) resulting in increased glucose uptake and glycolytic flux to lactate. The F2,6BP concentration is dictated by four bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) with distinct kinase:phosphatase activities. PFKFB4 is over-expressed in human cancers, induced by hypoxia and required for survival and growth of several cancer cell lines. Although PFKFB4 appears to be a rational target for anti-neoplastic drug development, it is not clear whether its kinase or phosphatase activity is required for cancer cell survival. In this study, we demonstrate that recombinant human PFKFB4 kinase activity is 4.3-fold greater than …


Loss Of 4e-Bp1 Function Induces Emt And Promotes Cancer Cell Migration And Invasion Via Cap-Dependent Translational Activation Of Snail, Weijia Cai, Qing Ye, Qing-Bai She Aug 2014

Loss Of 4e-Bp1 Function Induces Emt And Promotes Cancer Cell Migration And Invasion Via Cap-Dependent Translational Activation Of Snail, Weijia Cai, Qing Ye, Qing-Bai She

Markey Cancer Center Faculty Publications

The cap-dependent translation is frequently deregulated in a variety of cancers associated with tumor progression. However, the molecular basis of the translation activation for metastatic progression of cancer remains largely elusive. Here, we demonstrate that activation of cap-dependent translation by silencing the translational repressor 4E-BP1 causes cancer epithelial cells to undergo epithelial-mesenchymal transition (EMT), which is associated with selective upregulation of the EMT inducer Snail followed by repression of E-cadherin expression and promotion of cell migratory and invasive capabilities as well as metastasis. Conversely, inhibition of cap-dependent translation by a dominant active mutant 4E-BP1 effectively downregulates Snail expression and suppresses …


Rorα Binds To E2f1 To Inhibit Cell Proliferation And Regulate Mammary Gland Branching Morphogenesis, Gaofeng Xiong, Ren Xu Aug 2014

Rorα Binds To E2f1 To Inhibit Cell Proliferation And Regulate Mammary Gland Branching Morphogenesis, Gaofeng Xiong, Ren Xu

Markey Cancer Center Faculty Publications

Retinoic acid receptor-related orphan nuclear receptor alpha (RORα) is a potent tumor suppressor that reduces cell proliferation and inhibits tumor growth. However, the molecular mechanism by which it inhibits cell proliferation remains unknown. We demonstrate a noncanonical nuclear receptor pathway in which RORα binds to E2F1 to inhibit cell cycle progression. We showed that RORα bound to the heptad repeat and marked box region of E2F1 and suppressed E2F1-regulated transcription in epithelial cells. Binding of RORα inhibited E2F1 acetylation and its DNA-binding activity by recruiting histone deacetylase 1 (HDAC1) to the protein complexes. Knockdown of HDAC1 or inhibition of HDAC …


Nfkb Disrupts Tissue Polarity In 3d By Preventing Integration Of Microenvironmental Signals, Sabine Becker-Weimann, Gaofeng Xiong, Saori Furuta, Ju Han, Irene Kuhn, Uri-David Akavia, Dana Pe'er, Mina J. Bissell, Ren Xu Nov 2013

Nfkb Disrupts Tissue Polarity In 3d By Preventing Integration Of Microenvironmental Signals, Sabine Becker-Weimann, Gaofeng Xiong, Saori Furuta, Ju Han, Irene Kuhn, Uri-David Akavia, Dana Pe'er, Mina J. Bissell, Ren Xu

Markey Cancer Center Faculty Publications

The microenvironment of cells controls their phenotype, and thereby the architecture of the emerging multicellular structure or tissue. We have reported more than a dozen microenvironmental factors whose signaling must be integrated in order to effect an organized, functional tissue morphology. However, the factors that prevent integration of signaling pathways that merge form and function are still largely unknown. We have identified nuclear factor kappa B (NFkB) as a transcriptional regulator that disrupts important microenvironmental cues necessary for tissue organization. We compared the gene expression of organized and disorganized epithelial cells of the HMT-3522 breast cancer progression series: the non-malignant …


Coupling S100a4 To Rhotekin Alters Rho Signaling Output In Breast Cancer Cells, Min Chen, Anne R. Bresnick, Kathleen L. O'Connor Aug 2013

Coupling S100a4 To Rhotekin Alters Rho Signaling Output In Breast Cancer Cells, Min Chen, Anne R. Bresnick, Kathleen L. O'Connor

Markey Cancer Center Faculty Publications

Rho signaling is increasingly recognized to contribute to invasion and metastasis. In this study, we discovered that metastasis-associated protein S100A4 interacts with the Rho-binding domain (RBD) of Rhotekin, thus connecting S100A4 to the Rho pathway. Glutathione S-transferase pull-down and immunoprecipitation assays demonstrated that S100A4 specifically and directly binds to Rhotekin RBD, but not the other Rho effector RBDs. S100A4 binding to Rhotekin is calcium-dependent and uses residues distinct from those bound by active Rho. Interestingly, we found that S100A4 and Rhotekin can form a complex with active RhoA. Using RNA interference, we determined that suppression of both S100A4 and …


Inhibition Of Fatty Acid Synthase Attenuates Cd44-Associated Signaling And Reduces Metastasis In Colorectal Cancer, Yekaterina Y. Zaytseva, Piotr G. Rychahou, Pat Gulhati, Victoria Allison Elliott, William Conan Mustain, Kathleen O'Connor, Andrew J. Morris, Manjula Sunkara, Heidi L. Weiss, Eun Young Lee, B. Mark Evers Mar 2012

Inhibition Of Fatty Acid Synthase Attenuates Cd44-Associated Signaling And Reduces Metastasis In Colorectal Cancer, Yekaterina Y. Zaytseva, Piotr G. Rychahou, Pat Gulhati, Victoria Allison Elliott, William Conan Mustain, Kathleen O'Connor, Andrew J. Morris, Manjula Sunkara, Heidi L. Weiss, Eun Young Lee, B. Mark Evers

Markey Cancer Center Faculty Publications

Fatty acid synthase (FASN) and ATP-citrate lyase, key enzymes of de novo lipogenesis, are significantly upregulated and activated in many cancers and portend poor prognosis. Even though the role of lipogenesis in providing proliferative and survival advantages to cancer cells has been described, the impact of aberrant activation of lipogenic enzymes on cancer progression remains unknown. In this study, we found that elevated expression of FASN is associated with advanced stages of colorectal cancer (CRC) and liver metastasis, suggesting that it may play a role in progression of CRC to metastatic disease. Targeted inhibition of lipogenic enzymes abolished expression of …


Dysregulation Of The Mitogen Granulin In Human Cancer Through The Mir-15/107 Microrna Gene Group, Wang-Xia Wang, Natasha Kyprianou, Xiaowei Wang, Peter T. Nelson Nov 2010

Dysregulation Of The Mitogen Granulin In Human Cancer Through The Mir-15/107 Microrna Gene Group, Wang-Xia Wang, Natasha Kyprianou, Xiaowei Wang, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

Granulin (GRN) is a potent mitogen and growth factor implicated in many human cancers, but its regulation is poorly understood. Recent findings indicate that GRN is regulated strongly by the microRNA miR-107, which functionally overlaps with miR-15, miR-16, and miR-195 due to a common 5′ sequence critical for target specificity. In this study, we queried whether miR-107 and paralogs regulated GRN in human cancers. In cultured cells, anti-argonaute RNA coimmunoprecipitation with downstream microarray analyses indicates that GRN mRNA is directly targeted by numerous miR-15/107 miRNAs. We further tested this association in human tumors. MiR-15 and miR-16 are known to be …


Cyanidin-3-Glucoside Inhibits Ethanol-Induced Invasion Of Breast Cancer Cells Overexpressing Erbb2, Mei Xu, Kimberly A. Bower, Siying Wang, Jacqueline A. Frank, Gang Chen, Min Ding, Shiow Wang, Xianglin Shi, Zunji Ke, Jia Luo Oct 2010

Cyanidin-3-Glucoside Inhibits Ethanol-Induced Invasion Of Breast Cancer Cells Overexpressing Erbb2, Mei Xu, Kimberly A. Bower, Siying Wang, Jacqueline A. Frank, Gang Chen, Min Ding, Shiow Wang, Xianglin Shi, Zunji Ke, Jia Luo

Internal Medicine Faculty Publications

BACKGROUND: Ethanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is associated with poor prognosis. We sought to identify agents that can prevent or ameliorate ethanol-induced invasion of breast cancer cells. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables and fruits, is a potent natural antioxidant. Ethanol exposure causes the accumulation of intracellular reactive oxygen species (ROS). This …