Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Oncology

Cell Line, Tumor

Institution
Publication Year
Publication

Articles 1 - 30 of 86

Full-Text Articles in Medicine and Health Sciences

Targeting The Αvβ3/Ngr2 Pathway In Neuroendocrine Prostate Cancer, Anna Testa, Fabio Quaglia, Nicole M. Naranjo, Cecilia E. Verrillo, Christopher D. Shields, Stephen Lin, Maxwell W. Pickles, Drini F. Hamza, Tami Von Schalscha, David A. Cheresh, Benjamin E Leiby, Qin Liu, Jianyi Ding, William K. Kelly, D. Craig Hooper, Eva Corey, Edward F. Plow, Dario C. Altieri, Lucia R. Languino Nov 2023

Targeting The Αvβ3/Ngr2 Pathway In Neuroendocrine Prostate Cancer, Anna Testa, Fabio Quaglia, Nicole M. Naranjo, Cecilia E. Verrillo, Christopher D. Shields, Stephen Lin, Maxwell W. Pickles, Drini F. Hamza, Tami Von Schalscha, David A. Cheresh, Benjamin E Leiby, Qin Liu, Jianyi Ding, William K. Kelly, D. Craig Hooper, Eva Corey, Edward F. Plow, Dario C. Altieri, Lucia R. Languino

Department of Pharmacology, Physiology, and Cancer Biology Faculty Papers

Highly aggressive, metastatic, neuroendocrine prostate cancer, which typically develops from prostate cancer cells acquiring resistance to androgen deprivation therapy, is associated with limited treatment options and hence poor prognosis. We have previously demonstrated that the αVβ3 integrin is over-expressed in neuroendocrine prostate cancer. We now show that LM609, a monoclonal antibody that specifically targets the human αVβ3 integrin, hinders the growth of neuroendocrine prostate cancer patient-derived xenografts in vivo. Our group has recently identified a novel αVβ3 integrin binding partner, NgR2, responsible for regulating the expression of neuroendocrine markers and for inducing neuroendocrine differentiation in prostate cancer cells. Through in …


Impacting T-Cell Fitness In Multiple Myeloma: Potential Roles For Selinexor And Xpo1 Inhibitors, Adam Binder, Christopher Walker, Tomer Mark, Muhamed Baljevic Oct 2023

Impacting T-Cell Fitness In Multiple Myeloma: Potential Roles For Selinexor And Xpo1 Inhibitors, Adam Binder, Christopher Walker, Tomer Mark, Muhamed Baljevic

Department of Medical Oncology Faculty Papers

Competent T-cells with sufficient levels of fitness combat cancer formation and progression. In multiple myeloma (MM), T-cell exhaustion is caused by several factors including tumor burden, constant immune activation due to chronic disease, age, nutritional status, and certain MM treatments such as alkylating agents and proteasome inhibitors. Many currently used therapies, including bispecific T-cell engagers, anti-CD38 antibodies, proteasome inhibitors, and CART-cells, directly or indirectly depend on the anti-cancer activity of T-cells. Reduced T-cell fitness not only diminishes immune defenses, increasing patient susceptibility to opportunistic infections, but can impact effectiveness MM therapy effectiveness, bringing into focus sequencing strategies that could modulate …


Scutellaria Baicalensis Enhances 5-Fluorouracil-Based Chemotherapy Via Inhibition Of Proliferative Signaling Pathways, Haizhou Liu, Hui Liu, Zhiyi Zhou, Jessica Chung, Guojing Zhang, Jin Chang, Robert A Parise, Edward Chu, John C Schmitz Jun 2023

Scutellaria Baicalensis Enhances 5-Fluorouracil-Based Chemotherapy Via Inhibition Of Proliferative Signaling Pathways, Haizhou Liu, Hui Liu, Zhiyi Zhou, Jessica Chung, Guojing Zhang, Jin Chang, Robert A Parise, Edward Chu, John C Schmitz

Abington Jefferson Health Papers

Fluoropyridine-based chemotherapy remains the most widely used treatment for colorectal cancer (CRC). In this study, we investigated the mechanism by which the natural product Scutellaria baicalensis (Huang Qin; HQ) and one of its main components baicalin enhanced 5-fluorouracil (5-FU) antitumor activity against CRC. Cell proliferation assays, cell cycle analysis, reverse-phase protein array (RPPA) analysis, immunoblot analysis, and qRT-PCR were performed to investigate the mechanism(s) of action of HQ and its active components on growth of CRC cells. HQ exhibited in vitro antiproliferative activity against drug resistant human CRC cells, against human and mouse CRC cells with different genetic backgrounds and …


The Nogo Receptor Ngr2, A Novel Αvβ3 Integrin Effector, Induces Neuroendocrine Differentiation In Prostate Cancer, Fabio Quaglia, Shiv Ram Krishn, Khalid Sossey-Alaoui, Priyanka Shailendra Rana, Elzbieta Pluskota, Pyung Hun Park, Christopher D. Shields, Stephen Lin, Peter Mccue, Andrew V. Kossenkov, Yanqing Wang, David W. Goodrich, Sheng-Yu Ku, Himisha Beltran, William K. Kelly, Eva Corey, Maja Klose, Christine Bandtlow, Qin Liu, Dario C. Altieri, Edward F. Plow, Lucia R. Languino Nov 2022

The Nogo Receptor Ngr2, A Novel Αvβ3 Integrin Effector, Induces Neuroendocrine Differentiation In Prostate Cancer, Fabio Quaglia, Shiv Ram Krishn, Khalid Sossey-Alaoui, Priyanka Shailendra Rana, Elzbieta Pluskota, Pyung Hun Park, Christopher D. Shields, Stephen Lin, Peter Mccue, Andrew V. Kossenkov, Yanqing Wang, David W. Goodrich, Sheng-Yu Ku, Himisha Beltran, William K. Kelly, Eva Corey, Maja Klose, Christine Bandtlow, Qin Liu, Dario C. Altieri, Edward F. Plow, Lucia R. Languino

Department of Cancer Biology Faculty Papers

Androgen deprivation therapies aimed to target prostate cancer (PrCa) are only partially successful given the occurrence of neuroendocrine PrCa (NEPrCa), a highly aggressive and highly metastatic form of PrCa, for which there is no effective therapeutic approach. Our group has demonstrated that while absent in prostate adenocarcinoma, the αVβ3 integrin expression is increased during PrCa progression toward NEPrCa. Here, we show a novel pathway activated by αVβ3 that promotes NE differentiation (NED). This novel pathway requires the expression of a GPI-linked surface molecule, NgR2, also known as Nogo-66 receptor homolog 1. We show here that NgR2 is upregulated by αVβ3, …


Interleukin-8 Produced From Cancer-Associated Fibroblasts Suppresses Proliferation Of The Ocuch-Lm1 Cancer Cell Line, Ryota Tanaka, Kenjiro Kimura, Shimpei Eguchi, Go Ohira, Shogo Tanaka, Ryosuke Amano, Hiroaki Tanaka, Masakazu Yashiro, Masaichi Ohira, Shoji Kubo Jul 2022

Interleukin-8 Produced From Cancer-Associated Fibroblasts Suppresses Proliferation Of The Ocuch-Lm1 Cancer Cell Line, Ryota Tanaka, Kenjiro Kimura, Shimpei Eguchi, Go Ohira, Shogo Tanaka, Ryosuke Amano, Hiroaki Tanaka, Masakazu Yashiro, Masaichi Ohira, Shoji Kubo

Department of Medical Oncology Faculty Papers

Background: Cancer-associated fibroblasts (CAFs) play an important role in cancer growth by interacting with cancer cells, but their effects differ depending on the type of cancer. This study investigated the role of CAFs in biliary tract cancers (BTCs), compared with pancreatic ductal adenocarcinoma (PDAC) as a comparison cohort.

Methods: We retrospectively evaluated alpha-smooth muscle actin (αSMA) expression in CAFs from 114 cases of PDAC and 154 cases of BTCs who underwent surgical treatment at our institution from 1996 to 2017. CAFs were isolated from resected specimens of BTC and PDAC, and tested for the effects of their supernatants and cytokines …


Simultaneous Ck2/Tnik/Dyrk1 Inhibition By 108600 Suppresses Triple Negative Breast Cancer Stem Cells And Chemotherapy-Resistant Disease., Katsutoshi Sato, Amol A. Padgaonkar, Stacey J. Baker, Stephen C. Cosenza, Olga Rechkoblit, D.R.C. Venkata Subbaiah, Josep Domingo-Domenech, Alison Bartkowski, Elisa R. Port, Aneel K. Aggarwal, M. V. Ramana Reddy, Hanna Y. Irie, E. Premkumar Reddy Aug 2021

Simultaneous Ck2/Tnik/Dyrk1 Inhibition By 108600 Suppresses Triple Negative Breast Cancer Stem Cells And Chemotherapy-Resistant Disease., Katsutoshi Sato, Amol A. Padgaonkar, Stacey J. Baker, Stephen C. Cosenza, Olga Rechkoblit, D.R.C. Venkata Subbaiah, Josep Domingo-Domenech, Alison Bartkowski, Elisa R. Port, Aneel K. Aggarwal, M. V. Ramana Reddy, Hanna Y. Irie, E. Premkumar Reddy

Department of Medical Oncology Faculty Papers

Triple negative breast cancer (TNBC) remains challenging because of heterogeneous responses to chemotherapy. Incomplete response is associated with a greater risk of metastatic progression. Therefore, treatments that target chemotherapy-resistant TNBC and enhance chemosensitivity would improve outcomes for these high-risk patients. Breast cancer stem cell-like cells (BCSCs) have been proposed to represent a chemotherapy-resistant subpopulation responsible for tumor initiation, progression and metastases. Targeting this population could lead to improved TNBC disease control. Here, we describe a novel multi-kinase inhibitor, 108600, that targets the TNBC BCSC population. 108600 treatment suppresses growth, colony and mammosphere forming capacity of BCSCs and induces G2M arrest …


Combating Acquired Resistance To Mapk Inhibitors In Melanoma By Targeting Abl1/2-Mediated Reactivation Of Mek/Erk/Myc Signaling., Rakshamani Tripathi, Zulong Liu, Aditi Jain,, Anastasia Lyon, Christina Meeks, Dana Richards, Jinpeng Liu, Daheng He, Chi Wang, Marika Nespi, Andrey Rymar, Peng Wang, Melissa Wilson, Rina Plattner Oct 2020

Combating Acquired Resistance To Mapk Inhibitors In Melanoma By Targeting Abl1/2-Mediated Reactivation Of Mek/Erk/Myc Signaling., Rakshamani Tripathi, Zulong Liu, Aditi Jain,, Anastasia Lyon, Christina Meeks, Dana Richards, Jinpeng Liu, Daheng He, Chi Wang, Marika Nespi, Andrey Rymar, Peng Wang, Melissa Wilson, Rina Plattner

Department of Medical Oncology Faculty Papers

Metastatic melanoma remains an incurable disease for many patients due to the limited success of targeted and immunotherapies. BRAF and MEK inhibitors reduce metastatic burden for patients with melanomas harboring BRAF mutations; however, most eventually relapse due to acquired resistance. Here, we demonstrate that ABL1/2 kinase activities and/or expression are potentiated in cell lines and patient samples following resistance, and ABL1/2 drive BRAF and BRAF/MEK inhibitor resistance by inducing reactivation of MEK/ERK/MYC signaling. Silencing/inhibiting ABL1/2 blocks pathway reactivation, and resensitizes resistant cells to BRAF/MEK inhibitors, whereas expression of constitutively active ABL1/2 is sufficient to promote resistance. Significantly, nilotinib (2nd …


The Landscape Of Rna Polymerase Ii-Associated Chromatin Interactions In Prostate Cancer, Susmita G Ramanand, Yong Chen, Jiapei Yuan, Kelly Daescu, Maryou Bk Lambros, Kathleen E Houlahan, Suzanne Carreira, Wei Yuan, Guemhee Baek, Adam Sharp, Alec Paschalis, Mohammed Kanchwala, Yunpeng Gao, Adam Aslam, Nida Safdar, Xiaowei Zhan, Ganesh V Raj, Chao Xing, Paul C Boutros, Johann De Bono, Michael Q Zhang, Ram S Mani Aug 2020

The Landscape Of Rna Polymerase Ii-Associated Chromatin Interactions In Prostate Cancer, Susmita G Ramanand, Yong Chen, Jiapei Yuan, Kelly Daescu, Maryou Bk Lambros, Kathleen E Houlahan, Suzanne Carreira, Wei Yuan, Guemhee Baek, Adam Sharp, Alec Paschalis, Mohammed Kanchwala, Yunpeng Gao, Adam Aslam, Nida Safdar, Xiaowei Zhan, Ganesh V Raj, Chao Xing, Paul C Boutros, Johann De Bono, Michael Q Zhang, Ram S Mani

Faculty Scholarship for the College of Science & Mathematics

Transcriptional dysregulation is a hallmark of prostate cancer (PCa). We mapped the RNA polymerase II-associated (RNA Pol II-associated) chromatin interactions in normal prostate cells and PCa cells. We discovered thousands of enhancer-promoter, enhancer-enhancer, as well as promoter-promoter chromatin interactions. These transcriptional hubs operate within the framework set by structural proteins - CTCF and cohesins - and are regulated by the cooperative action of master transcription factors, such as the androgen receptor (AR) and FOXA1. By combining analyses from metastatic castration-resistant PCa (mCRPC) specimens, we show that AR locus amplification contributes to the transcriptional upregulation of the AR gene by increasing …


Cancer Cell Population Growth Kinetics At Low Densities Deviate From The Exponential Growth Model And Suggest An Allee Effect., Kaitlyn E Johnson, Grant Howard, William Mo, Michael K Strasser, Ernesto A B F Lima, Sui Huang, Amy Brock Aug 2019

Cancer Cell Population Growth Kinetics At Low Densities Deviate From The Exponential Growth Model And Suggest An Allee Effect., Kaitlyn E Johnson, Grant Howard, William Mo, Michael K Strasser, Ernesto A B F Lima, Sui Huang, Amy Brock

Articles, Abstracts, and Reports

Most models of cancer cell population expansion assume exponential growth kinetics at low cell densities, with deviations to account for observed slowing of growth rate only at higher densities due to limited resources such as space and nutrients. However, recent preclinical and clinical observations of tumor initiation or recurrence indicate the presence of tumor growth kinetics in which growth rates scale positively with cell numbers. These observations are analogous to the cooperative behavior of species in an ecosystem described by the ecological principle of the Allee effect. In preclinical and clinical models, however, tumor growth data are limited by the …


Commonly Integrated Epigenetic Modifications Of Differentially Expressed Genes Lead To Adaptive Resistance In Cancer., Abdullah Al Emran, Diego M Marzese, Dinoop R Menon, Heinz Hammerlindl, Farzana Ahmed, Erika Richtig, Pascal Duijf, Dave Hoon, Helmut Schaider May 2019

Commonly Integrated Epigenetic Modifications Of Differentially Expressed Genes Lead To Adaptive Resistance In Cancer., Abdullah Al Emran, Diego M Marzese, Dinoop R Menon, Heinz Hammerlindl, Farzana Ahmed, Erika Richtig, Pascal Duijf, Dave Hoon, Helmut Schaider

Articles, Abstracts, and Reports

Aim: To investigate the integrated epigenetic regulation of acquired drug resistance in cancer. Materials & methods: Our gene expression data of five induced drug-tolerant cell models, one resistant cell line and one publicly available drug-resistant dataset were integrated to identify common differentially expressed genes and pathways. ChIP-seq and DNA methylation by HM450K beadchip were used to study the epigenetic profile of differential expressed genes. Results & conclusion: Integrated transcriptomic analysis identified a common 'viral mimicry' related gene signature in induced drug-tolerant cells and the resistant state. Analysis of the epigenetic regulation revealed a common set of down-regulated genes, which are …


Star-Related Lipid Transfer Protein 10 (Stard10): A Novel Key Player In Alcohol-Induced Breast Cancer Progression, Andrea Floris, Jia Luo, Jacqueline A. Frank, Jennifer Zhou, Sandro Orrù, Michela Biancolella, Sabina Pucci, Augusto Orlandi, Paolo Campagna, Antonella Balzano, Komal Ramani, Maria Lauda Tomasi Jan 2019

Star-Related Lipid Transfer Protein 10 (Stard10): A Novel Key Player In Alcohol-Induced Breast Cancer Progression, Andrea Floris, Jia Luo, Jacqueline A. Frank, Jennifer Zhou, Sandro Orrù, Michela Biancolella, Sabina Pucci, Augusto Orlandi, Paolo Campagna, Antonella Balzano, Komal Ramani, Maria Lauda Tomasi

Pharmacology and Nutritional Sciences Faculty Publications

Background: Ethanol abuse promotes breast cancer development, metastasis and recurrence stimulating mammary tumorigenesis by mechanisms that remain unclear. Normally, 35% of breast cancer is Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2)-positive that predisposes to poor prognosis and relapse, while ethanol drinking leads to invasion of their ERBB2 positive cells triggering the phosphorylation status of mitogen-activated protein kinase. StAR-related lipid transfer protein 10 (STARD10) is a lipid transporter of phosphatidylcholine (PC) and phosphatidylethanolamine (PE); changes on membrane composition of PC and PE occur before the morphological tumorigenic events. Interestingly, STARD10 has been described to be highly expressed in 35–40% of ERBB2-positive breast …


Rare But Recurrent Ros1 Fusions Resulting From Chromosome 6q22 Microdeletions Are Targetable Oncogenes In Glioma., Monika A Davare, Jacob J Henderson, Anupriya Agarwal, Jacob P Wagner, Sudarshan R Iyer, Nameeta Shah, Randy Woltjer, Romel Somwar, Stephen W Gilheeney, Ana Decarvalo, Tom Mikkelson, Erwin G Van Meir, Marc Ladanyi, Brian J Druker Dec 2018

Rare But Recurrent Ros1 Fusions Resulting From Chromosome 6q22 Microdeletions Are Targetable Oncogenes In Glioma., Monika A Davare, Jacob J Henderson, Anupriya Agarwal, Jacob P Wagner, Sudarshan R Iyer, Nameeta Shah, Randy Woltjer, Romel Somwar, Stephen W Gilheeney, Ana Decarvalo, Tom Mikkelson, Erwin G Van Meir, Marc Ladanyi, Brian J Druker

Articles, Abstracts, and Reports

PURPOSE: Gliomas, a genetically heterogeneous group of primary central nervous system tumors, continue to pose a significant clinical challenge. Discovery of chromosomal rearrangements involving kinase genes has enabled precision therapy, and improved outcomes in several malignancies.

EXPERIMENTAL DESIGN: Positing that similar benefit could be accomplished for patients with brain cancer, we evaluated The Cancer Genome Atlas (TCGA) glioblastoma dataset. Functional validation of the oncogenic potential and inhibitory sensitivity of discovered ROS1 fusions was performed using three independent cell-based model systems, and an

RESULTS:

CONCLUSIONS: Our findings highlight that CNS tumors should be specifically interrogated for these rare intrachromosomal 6q22 microdeletion …


Targeting The Brd4/Foxo3a/Cdk6 Axis Sensitizes Akt Inhibition In Luminal Breast Cancer, Jingyi Liu, Weijie Guo, Zhibing Duan, Lei Zeng, Yadi Wu, Yule Chen, Fang Tai, Yifan Wang, Yiwei Lin, Qiang Zhang, Yanling He, Jiong Deng, Rachel L. Stewart, Chi Wang, Pengnian Charles Lin, Saghi Ghaffari, B. Mark Evers, Suling Liu, Ming-Ming Zhou, Binhua P. Zhou, Jian Shi Dec 2018

Targeting The Brd4/Foxo3a/Cdk6 Axis Sensitizes Akt Inhibition In Luminal Breast Cancer, Jingyi Liu, Weijie Guo, Zhibing Duan, Lei Zeng, Yadi Wu, Yule Chen, Fang Tai, Yifan Wang, Yiwei Lin, Qiang Zhang, Yanling He, Jiong Deng, Rachel L. Stewart, Chi Wang, Pengnian Charles Lin, Saghi Ghaffari, B. Mark Evers, Suling Liu, Ming-Ming Zhou, Binhua P. Zhou, Jian Shi

Molecular and Cellular Biochemistry Faculty Publications

BRD4 assembles transcriptional machinery at gene super-enhancer regions and governs the expression of genes that are critical for cancer progression. However, it remains unclear whether BRD4-mediated gene transcription is required for tumor cells to develop drug resistance. Our data show that prolonged treatment of luminal breast cancer cells with AKT inhibitors induces FOXO3a dephosphorylation, nuclear translocation, and disrupts its association with SirT6, eventually leading to FOXO3a acetylation as well as BRD4 recognition. Acetylated FOXO3a recognizes the BD2 domain of BRD4, recruits the BRD4/RNAPII complex to the CDK6 gene promoter, and induces its transcription. Pharmacological inhibition of either BRD4/FOXO3a association or …


Potent Immune Modulation By Medi6383, An Engineered Human Ox40 Ligand Igg4p Fc Fusion Protein., Michael D Oberst, Catherine Augé, Chad Morris, Stacy Kentner, Kathy Mulgrew, Kelly Mcglinchey, James Hair, Shino Hanabuchi, Qun Du, Melissa Damschroder, Hui Feng, Steven Eck, Nicholas Buss, Lolke De Haan, Andrew J Pierce, Haesun Park, Andrew Sylwester, Michael K Axthelm, Louis Picker, Nicholas P Morris, Andrew D Weinberg, Scott A Hammond May 2018

Potent Immune Modulation By Medi6383, An Engineered Human Ox40 Ligand Igg4p Fc Fusion Protein., Michael D Oberst, Catherine Augé, Chad Morris, Stacy Kentner, Kathy Mulgrew, Kelly Mcglinchey, James Hair, Shino Hanabuchi, Qun Du, Melissa Damschroder, Hui Feng, Steven Eck, Nicholas Buss, Lolke De Haan, Andrew J Pierce, Haesun Park, Andrew Sylwester, Michael K Axthelm, Louis Picker, Nicholas P Morris, Andrew D Weinberg, Scott A Hammond

Articles, Abstracts, and Reports

Ligation of OX40 (CD134, TNFRSF4) on activated T cells by its natural ligand (OX40L, CD252, TNFSF4) enhances cellular survival, proliferation, and effector functions such as cytokine release and cellular cytotoxicity. We engineered a recombinant human OX40L IgG4P Fc fusion protein termed MEDI6383 that assembles into a hexameric structure and exerts potent agonist activity following engagement of OX40. MEDI6383 displayed solution-phase agonist activity that was enhanced when the fusion protein was clustered by Fc gamma receptors (FcγRs) on the surface of adjacent cells. The resulting costimulation of OX40 on T cells induced NFκB promoter activity in OX40-expressing T cells and induced …


Beta-Catenin Cleavage Enhances Transcriptional Activation, Tatiana Goretsky, Emily M. Bradford, Qing Ye, Olivia F. Lamping, Tomas Vanagunas, Mary Pat Moyer, Patrick C. Keller, Preetika Sinh, Josep M. Llovet, Tianyan Gao, Qing-Bai She, Linheng Li, Terrence A. Barrett Jan 2018

Beta-Catenin Cleavage Enhances Transcriptional Activation, Tatiana Goretsky, Emily M. Bradford, Qing Ye, Olivia F. Lamping, Tomas Vanagunas, Mary Pat Moyer, Patrick C. Keller, Preetika Sinh, Josep M. Llovet, Tianyan Gao, Qing-Bai She, Linheng Li, Terrence A. Barrett

Internal Medicine Faculty Publications

Nuclear activation of Wnt/β-catenin signaling is required for cell proliferation in inflammation and cancer. Studies from our group indicate that β-catenin activation in colitis and colorectal cancer (CRC) correlates with increased nuclear levels of β-catenin phosphorylated at serine 552 (pβ-Cat552). Biochemical analysis of nuclear extracts from cancer biopsies revealed the existence of low molecular weight (LMW) pβ-Cat552, increased to the exclusion of full size (FS) forms of β-catenin. LMW β-catenin lacks both termini, leaving residues in the armadillo repeat intact. Further experiments showed that TCF4 predominantly binds LMW pβ-Cat552 in the nucleus of inflamed and …


Nanoparticle Orientation To Control Rna Loading And Ligand Display On Extracellular Vesicles For Cancer Regression, Fengmei Pi, Daniel W. Binzel, Tae Jin Lee, Zhefeng Li, Meiyan Sun, Piotr G. Rychahou, Hui Li, Farzin Haque, Shaoying Wang, Carlo M. Croce, Bin Guo, B. Mark Evers, Peixuan Guo Jan 2018

Nanoparticle Orientation To Control Rna Loading And Ligand Display On Extracellular Vesicles For Cancer Regression, Fengmei Pi, Daniel W. Binzel, Tae Jin Lee, Zhefeng Li, Meiyan Sun, Piotr G. Rychahou, Hui Li, Farzin Haque, Shaoying Wang, Carlo M. Croce, Bin Guo, B. Mark Evers, Peixuan Guo

Markey Cancer Center Faculty Publications

Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for …


Nadph Oxidase 5 (Nox5)-Induced Reactive Oxygen Signaling Modulates Normoxic Hif-1Α And P27, Smitha Antony, Guojian Jiang, Yongzhong Wu, Jennifer L Meitzler, Hala R Makhlouf, Diana C Haines, Donna Butcher, Dave S B Hoon, Jiuping Ji, Yiping Zhang, Agnes Juhasz, Jiamo Lu, Han Liu, Iris Dahan, Mariam Konate, Krishnendu K Roy, James H Doroshow Dec 2017

Nadph Oxidase 5 (Nox5)-Induced Reactive Oxygen Signaling Modulates Normoxic Hif-1Α And P27, Smitha Antony, Guojian Jiang, Yongzhong Wu, Jennifer L Meitzler, Hala R Makhlouf, Diana C Haines, Donna Butcher, Dave S B Hoon, Jiuping Ji, Yiping Zhang, Agnes Juhasz, Jiamo Lu, Han Liu, Iris Dahan, Mariam Konate, Krishnendu K Roy, James H Doroshow

Articles, Abstracts, and Reports

NADPH oxidase 5 (NOX5) generated reactive oxygen species (ROS) have been implicated in signaling cascades that regulate cancer cell proliferation. To evaluate and validate NOX5 expression in human tumors, we screened a broad range of tissue microarrays (TMAs), and report substantial overexpression of NOX5 in malignant melanoma and cancers of the prostate, breast, and ovary. In human UACC-257 melanoma cells that possesses high levels of functional endogenous NOX5, overexpression of NOX5 resulted in enhanced cell growth, increased numbers of BrdU positive cells, and increased γ-H2AX levels. Additionally, NOX5-overexpressing (stable and inducible) UACC-257 cells demonstrated increased normoxic HIF-1α expression and decreased …


Top2a And Ezh2 Provide Early Detection Of An Aggressive Prostate Cancer Subgroup., David P. Labbé, Christopher J. Sweeney, Myles Brown, Phillip Galbo, Spencer Rosario, Kristine M. Wadosky, Sheng-Yu Ku, Martin Sjöström, Mohammed Alshalalfa, Nicholas Erho, Elai Davicioni, R. Jeffrey Karnes, Edward M. Schaeffer, Robert B. Jenkins, Robert B. Den, Ashley E. Ross, Michaela Bowden, Ying Huang, Kathryn P. Gray, Felix Y. Feng, Daniel E. Spratt, David W. Goodrich, Kevin H. Eng, Leigh Ellis Nov 2017

Top2a And Ezh2 Provide Early Detection Of An Aggressive Prostate Cancer Subgroup., David P. Labbé, Christopher J. Sweeney, Myles Brown, Phillip Galbo, Spencer Rosario, Kristine M. Wadosky, Sheng-Yu Ku, Martin Sjöström, Mohammed Alshalalfa, Nicholas Erho, Elai Davicioni, R. Jeffrey Karnes, Edward M. Schaeffer, Robert B. Jenkins, Robert B. Den, Ashley E. Ross, Michaela Bowden, Ying Huang, Kathryn P. Gray, Felix Y. Feng, Daniel E. Spratt, David W. Goodrich, Kevin H. Eng, Leigh Ellis

Department of Radiation Oncology Faculty Papers

Purpose: Current clinical parameters do not stratify indolent from aggressive prostate cancer. Aggressive prostate cancer, defined by the progression from localized disease to metastasis, is responsible for the majority of prostate cancer–associated mortality. Recent gene expression profiling has proven successful in predicting the outcome of prostate cancer patients; however, they have yet to provide targeted therapy approaches that could inhibit a patient's progression to metastatic disease. Experimental Design: We have interrogated a total of seven primary prostate cancer cohorts (n = 1,900), two metastatic castration-resistant prostate cancer datasets (n = 293), and one prospective cohort (n = 1,385) to assess …


Cancer-Associated Fibroblasts Neutralize The Anti-Tumor Effect Of Csf1 Receptor Blockade By Inducing Pmn-Mdsc Infiltration Of Tumors., Vinit Kumar, Laxminarasimha Donthireddy, Douglas Marvel, Thomas Condamine, Fang Wang, Sergio Lavilla-Alonso, Ayumi Hashimoto, Prashanthi Vonteddu, Reeti Behera, Marlee A. Goins, Charles Mulligan, Brian Nam, Neil Hockstein, Fred Denstman, Shanti Shakamuri, David W. Speicher, Ashani T. Weeraratna, Timothy Chao, Robert H. Vonderheide, Lucia R. Languino, Peter Ordentlich, Qin Liu, Xiaowei Xu, Albert Lo, Ellen Puré, Chunsheng Zhang, Andrey Loboda, Manuel A. Sepulveda, Linda A. Snyder, Dmitry I. Gabrilovich Nov 2017

Cancer-Associated Fibroblasts Neutralize The Anti-Tumor Effect Of Csf1 Receptor Blockade By Inducing Pmn-Mdsc Infiltration Of Tumors., Vinit Kumar, Laxminarasimha Donthireddy, Douglas Marvel, Thomas Condamine, Fang Wang, Sergio Lavilla-Alonso, Ayumi Hashimoto, Prashanthi Vonteddu, Reeti Behera, Marlee A. Goins, Charles Mulligan, Brian Nam, Neil Hockstein, Fred Denstman, Shanti Shakamuri, David W. Speicher, Ashani T. Weeraratna, Timothy Chao, Robert H. Vonderheide, Lucia R. Languino, Peter Ordentlich, Qin Liu, Xiaowei Xu, Albert Lo, Ellen Puré, Chunsheng Zhang, Andrey Loboda, Manuel A. Sepulveda, Linda A. Snyder, Dmitry I. Gabrilovich

Kimmel Cancer Center Papers, Presentations, and Grand Rounds

Tumor-associated macrophages (TAM) contribute to all aspects of tumor progression. Use of CSF1R inhibitors to target TAM is therapeutically appealing, but has had very limited anti-tumor effects. Here, we have identified the mechanism that limited the effect of CSF1R targeted therapy. We demonstrated that carcinoma-associated fibroblasts (CAF) are major sources of chemokines that recruit granulocytes to tumors. CSF1 produced by tumor cells caused HDAC2-mediated downregulation of granulocyte-specific chemokine expression in CAF, which limited migration of these cells to tumors. Treatment with CSF1R inhibitors disrupted this crosstalk and triggered a profound increase in granulocyte recruitment to tumors. Combining CSF1R inhibitor with …


Tumor Suppressor Pdcd4 Attenuates Sin1 Translation To Inhibit Invasion In Colon Carcinoma, Qing Wang, Jiang Zhu, Ya-Wen Wang, Yong Dai, Yanlei Wang, Chi Wang, Jinpeng Liu, Alyson Baker, Nancy H. Colburn, Hsin-Sheng Yang Nov 2017

Tumor Suppressor Pdcd4 Attenuates Sin1 Translation To Inhibit Invasion In Colon Carcinoma, Qing Wang, Jiang Zhu, Ya-Wen Wang, Yong Dai, Yanlei Wang, Chi Wang, Jinpeng Liu, Alyson Baker, Nancy H. Colburn, Hsin-Sheng Yang

Toxicology and Cancer Biology Faculty Publications

Programmed cell death 4 (Pdcd4), a tumor invasion suppressor, is frequently downregulated in colorectal cancer and other cancers. In this study, we find that loss of Pdcd4 increases the activity of mammalian target of rapamycin complex 2 (mTORC2) and thereby upregulates Snail expression. Examining the components of mTORC2 showed that Pdcd4 knockdown increased the protein but not mRNA level of stress-activated-protein kinase interacting protein 1 (Sin1), which resulted from enhanced Sin1 translation. To understand how Pdcd4 regulates Sin1 translation, the SIN1 5′ untranslated region (5′UTR) was fused with luciferase reporter and named as 5′Sin1-Luc. Pdcd4 knockdown/knockout significantly increased the translation …


Smarcb1 Is Required For Widespread Baf Complex-Mediated Activation Of Enhancers And Bivalent Promoters., Robert T Nakayama, John L Pulice, Alfredo M Valencia, Matthew J Mcbride, Zachary M Mckenzie, Mark A Gillespie, Wai Lim Ku, Mingxiang Teng, Kairong Cui, Robert T Williams, Seth H Cassel, He Qing, Christian J Widmer, George D Demetri, Rafael A Irizarry, Keji Zhao, Jeffrey A Ranish, Cigall Kadoch Nov 2017

Smarcb1 Is Required For Widespread Baf Complex-Mediated Activation Of Enhancers And Bivalent Promoters., Robert T Nakayama, John L Pulice, Alfredo M Valencia, Matthew J Mcbride, Zachary M Mckenzie, Mark A Gillespie, Wai Lim Ku, Mingxiang Teng, Kairong Cui, Robert T Williams, Seth H Cassel, He Qing, Christian J Widmer, George D Demetri, Rafael A Irizarry, Keji Zhao, Jeffrey A Ranish, Cigall Kadoch

Articles, Abstracts, and Reports

Perturbations to mammalian SWI/SNF (mSWI/SNF or BAF) complexes contribute to more than 20% of human cancers, with driving roles first identified in malignant rhabdoid tumor, an aggressive pediatric cancer characterized by biallelic inactivation of the core BAF complex subunit SMARCB1 (BAF47). However, the mechanism by which this alteration contributes to tumorigenesis remains poorly understood. We find that BAF47 loss destabilizes BAF complexes on chromatin, absent significant changes in complex assembly or integrity. Rescue of BAF47 in BAF47-deficient sarcoma cell lines results in increased genome-wide BAF complex occupancy, facilitating widespread enhancer activation and opposition of Polycomb-mediated repression at bivalent promoters. We …


Detection Of Activating Estrogen Receptor Gene (Esr1) Mutations In Single Circulating Tumor Cells, Carmela Paolillo, Zhaomei Mu, Giovanna Rossi, Matthew J. Schiewer, Thomas Nguyen, Laura Austin, Ettore Capoluongo, Karen E. Knudsen, Massimo Cristofanilli, Paolo Fortina Oct 2017

Detection Of Activating Estrogen Receptor Gene (Esr1) Mutations In Single Circulating Tumor Cells, Carmela Paolillo, Zhaomei Mu, Giovanna Rossi, Matthew J. Schiewer, Thomas Nguyen, Laura Austin, Ettore Capoluongo, Karen E. Knudsen, Massimo Cristofanilli, Paolo Fortina

Department of Cancer Biology Faculty Papers

Purpose: Early detection is essential for treatment plans before onset of metastatic disease. Our purpose was to demonstrate feasibility to detect and monitor estrogen receptor 1 (ESR1) gene mutations at the single circulating tumor cell (CTC) level in metastatic breast cancer (MBC). Experimental Design: We used a CTC molecular characterization approach to investigate heterogeneity of 14 hotspot mutations in ESR1 and their correlation with endocrine resistance. Combining the CellSearch and DEPArray technologies allowed recovery of 71 single CTCs and 12 WBC from 3 ER-positive MBC patients. Forty CTCs and 12 WBC were subjected to whole genome amplification by MALBAC and …


Posttranscriptional Upregulation Of Idh1 By Hur Establishes A Powerful Survival Phenotype In Pancreatic Cancer Cells., Mahsa Zarei, Shruti Lal, Seth J. Parker, Avinoam Nevler, Ali Vaziri-Gohar, Katerina Dukleska, Nicole C. Mambelli-Lisboa, Cynthia Moffat, Fernando F Blanco, Saswati N. Chand, Masaya Jimbo, Joseph A. Cozzitorto, Wei Jiang, Charles J. Yeo, Eric R. Londin, Erin L. Seifert, Christian M. Metallo, Jonathan R. Brody, Jordan M. Winter Aug 2017

Posttranscriptional Upregulation Of Idh1 By Hur Establishes A Powerful Survival Phenotype In Pancreatic Cancer Cells., Mahsa Zarei, Shruti Lal, Seth J. Parker, Avinoam Nevler, Ali Vaziri-Gohar, Katerina Dukleska, Nicole C. Mambelli-Lisboa, Cynthia Moffat, Fernando F Blanco, Saswati N. Chand, Masaya Jimbo, Joseph A. Cozzitorto, Wei Jiang, Charles J. Yeo, Eric R. Londin, Erin L. Seifert, Christian M. Metallo, Jonathan R. Brody, Jordan M. Winter

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Cancer aggressiveness may result from the selective pressure of a harsh nutrient-deprived microenvironment. Here we illustrate how such conditions promote chemotherapy resistance in pancreatic ductal adenocarcinoma (PDAC). Glucose or glutamine withdrawal resulted in a 5- to 10-fold protective effect with chemotherapy treatment. PDAC xenografts were less sensitive to gemcitabine in hypoglycemic mice compared with hyperglycemic mice. Consistent with this observation, patients receiving adjuvant gemcitabine (n = 107) with elevated serum glucose levels (HgbA1C > 6.5%) exhibited improved survival. We identified enhanced antioxidant defense as a driver of chemoresistance in this setting. ROS levels were doubled in vitro by either nutrient withdrawal …


Epigenetic Regulation Of Kpc1 Ubiquitin Ligase Affects The Nf-Κb Pathway In Melanoma., Yuuki Iida, Aaron Ciechanover, Diego M Marzese, Keisuke Hata, Matias Bustos, Shigeshi Ono, Jinhua Wang, Matthew P Salomon, Kevin Tran, Stella Lam, Sandy Hsu, Nellie Nelson, Yelena Kravtsova-Ivantsiv, Gordon B Mills, Michael A Davies, Dave S B Hoon Aug 2017

Epigenetic Regulation Of Kpc1 Ubiquitin Ligase Affects The Nf-Κb Pathway In Melanoma., Yuuki Iida, Aaron Ciechanover, Diego M Marzese, Keisuke Hata, Matias Bustos, Shigeshi Ono, Jinhua Wang, Matthew P Salomon, Kevin Tran, Stella Lam, Sandy Hsu, Nellie Nelson, Yelena Kravtsova-Ivantsiv, Gordon B Mills, Michael A Davies, Dave S B Hoon

Articles, Abstracts, and Reports

Purpose: Abnormal activation of the NF-κB pathway induces a more aggressive phenotype of cutaneous melanoma. Understanding the mechanisms involved in melanoma NF-κB activation may identify novel targets for this pathway. KPC1, an E3 ubiquitin ligase, is a regulator of the NF-κB pathway. The objective of this study was to investigate the mechanisms regulating KPC1 expression and its clinical impact in melanoma.Experimental Design: The clinical impact of KPC1 expression and its epigenetic regulation were assessed in large cohorts of clinically well-annotated melanoma tissues (tissue microarrays; n = 137, JWCI cohort; n = 40) and The Cancer Genome Atlas database (TCGA …


Abl Kinase Regulation By Braf/Erk And Cooperation With Akt In Melanoma, Aditi Jain, Rakshamani Tripathi, Courtney P. Turpin, Chi Wang, Rina Plattner Aug 2017

Abl Kinase Regulation By Braf/Erk And Cooperation With Akt In Melanoma, Aditi Jain, Rakshamani Tripathi, Courtney P. Turpin, Chi Wang, Rina Plattner

Pharmacology and Nutritional Sciences Faculty Publications

The melanoma incidence continues to increase, and the disease remains incurable for many due to its metastatic nature and high rate of therapeutic resistance. In particular, melanomas harboring BRAFV600E and PTEN mutations often are resistant to current therapies, including BRAF inhibitors (BRAFi) and immune checkpoint inhibitors. Abl kinases (Abl/Arg) are activated in melanomas and drive progression; however, their mechanism of activation has not been established. Here we elucidate a novel link between BRAFV600E/ERK signaling and Abl kinases. We demonstrate that BRAFV600E/ERK play a critical role in binding, phosphorylating and regulating Abl localization and Abl/Arg activation …


A Naturally Generated Decoy Of The Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance In Tumors, Nikhil Hebbar, Ravshan Burikhanov, Nidhi Shukla, Shirley Qiu, Yanming Zhao, Kojo S. J. Elenitoba-Johnson, Vivek M. Rangnekar Aug 2017

A Naturally Generated Decoy Of The Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance In Tumors, Nikhil Hebbar, Ravshan Burikhanov, Nidhi Shukla, Shirley Qiu, Yanming Zhao, Kojo S. J. Elenitoba-Johnson, Vivek M. Rangnekar

Radiation Medicine Faculty Publications

Primary tumors are often heterogeneous, composed of therapy-sensitive and emerging therapy-resistant cancer cells. Interestingly, treatment of therapy-sensitive tumors in heterogeneous tumor microenvironments results in apoptosis of therapy-resistant tumors. In this study, we identify a prostate apoptosis response-4 (Par-4) amino-terminal fragment (PAF) that is released by diverse therapy-sensitive cancer cells following therapy-induced caspase cleavage of the tumor suppressor Par-4 protein. PAF caused apoptosis in cancer cells resistant to therapy and inhibited tumor growth. A VASA segment of Par-4 mediated its binding and degradation by the ubiquitin ligase Fbxo45, resulting in loss of Par-4 proapoptotic function. Conversely, PAF, which contains this VASA …


A Tnf-Jnk-Axl-Erk Signaling Axis Mediates Primary Resistance To Egfr Inhibition In Glioblastoma., Gao Guo, Ke Gong, Sonia Ali, Neha Ali, Shahzad Shallwani, Kimmo J Hatanpaa, Edward Pan, Bruce Mickey, Sandeep Burma, David H Wang, Santosh Kesari, Jann N Sarkaria, Dawen Zhao, Amyn A Habib Aug 2017

A Tnf-Jnk-Axl-Erk Signaling Axis Mediates Primary Resistance To Egfr Inhibition In Glioblastoma., Gao Guo, Ke Gong, Sonia Ali, Neha Ali, Shahzad Shallwani, Kimmo J Hatanpaa, Edward Pan, Bruce Mickey, Sandeep Burma, David H Wang, Santosh Kesari, Jann N Sarkaria, Dawen Zhao, Amyn A Habib

Articles, Abstracts, and Reports

Aberrant epidermal growth factor receptor (EGFR) signaling is widespread in cancer, making the EGFR an important target for therapy. EGFR gene amplification and mutation are common in glioblastoma (GBM), but EGFR inhibition has not been effective in treating this tumor. Here we propose that primary resistance to EGFR inhibition in glioma cells results from a rapid compensatory response to EGFR inhibition that mediates cell survival. We show that in glioma cells expressing either EGFR wild type or the mutant EGFRvIII, EGFR inhibition triggers a rapid adaptive response driven by increased tumor necrosis factor (TNF) secretion, which leads to activation in …


Chloroformate Derivatization For Tracing The Fate Of Amino Acids In Cells And Tissues By Multiple Stable Isotope Resolved Metabolomics (Msirm), Ye Yang, Teresa W. -M. Fan, Andrew N. Lane, Richard M. Higashi Jul 2017

Chloroformate Derivatization For Tracing The Fate Of Amino Acids In Cells And Tissues By Multiple Stable Isotope Resolved Metabolomics (Msirm), Ye Yang, Teresa W. -M. Fan, Andrew N. Lane, Richard M. Higashi

Center for Environmental and Systems Biochemistry Faculty Publications

Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different …


Divergence Of Camp Signalling Pathways Mediating Augmented Nucleotide Excision Repair And Pigment Induction In Melanocytes, Erin M. Wolf Horrell, Stuart G. Jarrett, Katharine M. Carter, John A. D'Orazio Jul 2017

Divergence Of Camp Signalling Pathways Mediating Augmented Nucleotide Excision Repair And Pigment Induction In Melanocytes, Erin M. Wolf Horrell, Stuart G. Jarrett, Katharine M. Carter, John A. D'Orazio

Markey Cancer Center Faculty Publications

Loss‐of‐function melanocortin 1 receptor (MC1R) polymorphisms are common in UV‐sensitive fair‐skinned individuals and are associated with blunted cAMP second messenger signalling and higher lifetime risk of melanoma because of diminished ability of melanocytes to cope with UV damage. cAMP signalling positions melanocytes to resist UV injury by upregulating synthesis of UV‐blocking eumelanin pigment and by enhancing the repair of UV‐induced DNA damage. cAMP enhances melanocyte nucleotide excision repair (NER), the genome maintenance pathway responsible for the removal of mutagenic UV photolesions, through cAMP‐activated protein kinase (protein kinase A)‐mediated phosphorylation of the ataxia telangiectasia‐mutated and Rad3‐related (ATR) protein on the S435 …


The Rhoj-Bad Signaling Network: An Achilles' Heel For Braf Mutant Melanomas., Rolando Ruiz, Sohail Jahid, Melissa Harris, Diego M Marzese, Francisco Espitia, Priya Vasudeva, Chi-Fen Chen, Sebastien De Feraudy, Jie Wu, Daniel L Gillen, Tatiana B Krasieva, Bruce J Tromberg, William J Pavan, Dave S B Hoon, Anand K Ganesan Jul 2017

The Rhoj-Bad Signaling Network: An Achilles' Heel For Braf Mutant Melanomas., Rolando Ruiz, Sohail Jahid, Melissa Harris, Diego M Marzese, Francisco Espitia, Priya Vasudeva, Chi-Fen Chen, Sebastien De Feraudy, Jie Wu, Daniel L Gillen, Tatiana B Krasieva, Bruce J Tromberg, William J Pavan, Dave S B Hoon, Anand K Ganesan

Articles, Abstracts, and Reports

Genes and pathways that allow cells to cope with oncogene-induced stress represent selective cancer therapeutic targets that remain largely undiscovered. In this study, we identify a RhoJ signaling pathway that is a selective therapeutic target for BRAF mutant cells. RhoJ deletion in BRAF mutant melanocytes modulates the expression of the pro-apoptotic protein BAD as well as genes involved in cellular metabolism, impairing nevus formation, cellular transformation, and metastasis. Short-term treatment of nascent melanoma tumors with PAK inhibitors that block RhoJ signaling halts the growth of BRAF mutant melanoma tumors in vivo and induces apoptosis in melanoma cells in vitro via …