Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Medicine and Health Sciences

Innate Immune Activation By Checkpoint Inhibition In Human Patient-Derived Lung Cancer Tissues, Teresa W. M. Fan, Richard M. Higashi, Huan Song, Saeed Daneshmandi, Angela L. Mahan, Matthew S. Purdom, Therese J. Bocklage, Thomas A. Pittman, Daheng He, Chi Wang, Andrew N. Lane Aug 2021

Innate Immune Activation By Checkpoint Inhibition In Human Patient-Derived Lung Cancer Tissues, Teresa W. M. Fan, Richard M. Higashi, Huan Song, Saeed Daneshmandi, Angela L. Mahan, Matthew S. Purdom, Therese J. Bocklage, Thomas A. Pittman, Daheng He, Chi Wang, Andrew N. Lane

Center for Environmental and Systems Biochemistry Faculty Publications

Although Pembrolizumab-based immunotherapy has significantly improved lung cancer patient survival, many patients show variable efficacy and resistance development. A better understanding of the drug’s action is needed to improve patient outcomes. Functional heterogeneity of the tumor microenvironment (TME) is crucial to modulating drug resistance; understanding of individual patients’ TME that impacts drug response is hampered by lack of appropriate models. Lung organotypic tissue slice cultures (OTC) with patients’ native TME procured from primary and brain-metastasized (BM) non-small cell lung cancer (NSCLC) patients were treated with Pembrolizumab and/or beta-glucan (WGP, an innate immune activator). Metabolic tracing with 13C6-Glc/ …


Nmr Methods For Determining Lipid Turnover Via Stable Isotope Resolved Metabolomics, Penghui Lin, Li Dai, Daniel R. Crooks, Leonard M. Neckers, Richard M. Higashi, Teresa W.-M. Fan, Andrew N. Lane Mar 2021

Nmr Methods For Determining Lipid Turnover Via Stable Isotope Resolved Metabolomics, Penghui Lin, Li Dai, Daniel R. Crooks, Leonard M. Neckers, Richard M. Higashi, Teresa W.-M. Fan, Andrew N. Lane

Center for Environmental and Systems Biochemistry Faculty Publications

Lipids comprise diverse classes of compounds that are important for the structure and properties of membranes, as high-energy fuel sources and as signaling molecules. Therefore, the turnover rates of these varied classes of lipids are fundamental to cellular function. However, their enormous chemical diversity and dynamic range in cells makes detailed analysis very complex. Furthermore, although stable isotope tracers enable the determination of synthesis and degradation of complex lipids, the numbers of distinguishable molecules increase enormously, which exacerbates the problem. Although LC-MS-MS (Liquid Chromatography-Tandem Mass Spectrometry) is the standard for lipidomics, NMR can add value in global lipid analysis and …


Resolving Metabolic Heterogeneity In Experimental Models Of The Tumor Microenvironment From A Stable Isotope Resolved Metabolomics Perspective, Teresa W-M Fan, Richard M. Higashi, Yelena Chernayavskaya, Andrew N. Lane Jun 2020

Resolving Metabolic Heterogeneity In Experimental Models Of The Tumor Microenvironment From A Stable Isotope Resolved Metabolomics Perspective, Teresa W-M Fan, Richard M. Higashi, Yelena Chernayavskaya, Andrew N. Lane

Center for Environmental and Systems Biochemistry Faculty Publications

The tumor microenvironment (TME) comprises complex interactions of multiple cell types that determines cell behavior and metabolism such as nutrient competition and immune suppression. We discuss the various types of heterogeneity that exist in solid tumors, and the complications this invokes for studies of TME. As human subjects and in vivo model systems are complex and difficult to manipulate, simpler 3D model systems that are compatible with flexible experimental control are necessary for studying metabolic regulation in TME. Stable Isotope Resolved Metabolomics (SIRM) is a valuable tool for tracing metabolic networks in complex systems, but at present does not directly …


Imaging Of Glucose Metabolism By 13c-Mri Distinguishes Pancreatic Cancer Subtypes In Mice, Shun Kishimoto, Jeffrey R. Brender, Daniel R. Crooks, Shingo Matsumoto, Tomohiro Seki, Nobu Oshima, Hellmut Merkle, Penghui Lin, Galen Reed, Albert P. Chen, Jan Henrik Ardenkjaer-Larsen, Jeeva Munasinghe, Keita Saito, Kazutoshi Yamamoto, Peter L. Choyke, James Mitchell, Andrew N. Lane, Teresa W. M. Fan, W. Marston Linehan, Murali C. Krishna Aug 2019

Imaging Of Glucose Metabolism By 13c-Mri Distinguishes Pancreatic Cancer Subtypes In Mice, Shun Kishimoto, Jeffrey R. Brender, Daniel R. Crooks, Shingo Matsumoto, Tomohiro Seki, Nobu Oshima, Hellmut Merkle, Penghui Lin, Galen Reed, Albert P. Chen, Jan Henrik Ardenkjaer-Larsen, Jeeva Munasinghe, Keita Saito, Kazutoshi Yamamoto, Peter L. Choyke, James Mitchell, Andrew N. Lane, Teresa W. M. Fan, W. Marston Linehan, Murali C. Krishna

Center for Environmental and Systems Biochemistry Faculty Publications

Metabolic differences among and within tumors can be an important determinant in cancer treatment outcome. However, methods for determining these differences non-invasively in vivo is lacking. Using pancreatic ductal adenocarcinoma as a model, we demonstrate that tumor xenografts with a similar genetic background can be distinguished by their differing rates of the metabolism of 13C labeled glucose tracers, which can be imaged without hyperpolarization by using newly developed techniques for noise suppression. Using this method, cancer subtypes that appeared to have similar metabolic profiles based on steady state metabolic measurement can be distinguished from each other. The metabolic maps from …


Stable Isotope-Resolved Metabolomics Shows Metabolic Resistance To Anti-Cancer Selenite In 3d Spheroids Versus 2d Cell Cultures, Teresa W. -M. Fan, Salim S. El-Amouri, Jessica K. A. Macedo, Qing Jun Wang, Huan Song, Teresa Cassel, Andrew N. Lane Jul 2018

Stable Isotope-Resolved Metabolomics Shows Metabolic Resistance To Anti-Cancer Selenite In 3d Spheroids Versus 2d Cell Cultures, Teresa W. -M. Fan, Salim S. El-Amouri, Jessica K. A. Macedo, Qing Jun Wang, Huan Song, Teresa Cassel, Andrew N. Lane

Center for Environmental and Systems Biochemistry Faculty Publications

Conventional two-dimensional (2D) cell cultures are grown on rigid plastic substrates with unrealistic concentration gradients of O2, nutrients, and treatment agents. More importantly, 2D cultures lack cell–cell and cell–extracellular matrix (ECM) interactions, which are critical for regulating cell behavior and functions. There are several three-dimensional (3D) cell culture systems such as Matrigel, hydrogels, micropatterned plates, and hanging drop that overcome these drawbacks but they suffer from technical challenges including long spheroid formation times, difficult handling for high throughput assays, and/or matrix contamination for metabolic studies. Magnetic 3D bioprinting (M3DB) can circumvent these issues by utilizing nanoparticles that enable …


Acute Loss Of Iron-Sulfur Clusters Results In Metabolic Reprogramming And Generation Of Lipid Droplets In Mammalian Cells, Daniel R. Crooks, Nunziata Maio, Andrew N. Lane, Michal Jarnik, Richard M. Higashi, Ronald G. Haller, Ye Yang, Teresa Whei-Mei Fan, W. Marston Linehan, Tracey A. Rouault Mar 2018

Acute Loss Of Iron-Sulfur Clusters Results In Metabolic Reprogramming And Generation Of Lipid Droplets In Mammalian Cells, Daniel R. Crooks, Nunziata Maio, Andrew N. Lane, Michal Jarnik, Richard M. Higashi, Ronald G. Haller, Ye Yang, Teresa Whei-Mei Fan, W. Marston Linehan, Tracey A. Rouault

Center for Environmental and Systems Biochemistry Faculty Publications

Iron–sulfur (Fe-S) clusters are ancient cofactors in cells and participate in diverse biochemical functions, including electron transfer and enzymatic catalysis. Although cell lines derived from individuals carrying mutations in the Fe-S cluster biogenesis pathway or siRNA-mediated knockdown of the Fe-S assembly components provide excellent models for investigating Fe-S cluster formation in mammalian cells, these experimental strategies focus on the consequences of prolonged impairment of Fe-S assembly. Here, we constructed and expressed dominant–negative variants of the primary Fe-S biogenesis scaffold protein iron–sulfur cluster assembly enzyme 2 (ISCU2) in human HEK293 cells. This approach enabled us to study the early metabolic reprogramming …


Noninvasive Liquid Diet Delivery Of Stable Isotopes Into Mouse Models For Deep Metabolic Network Tracing, Ramon C. Sun, Teresa W.-M. Fan, Pan Deng, Richard M. Higashi, Andrew N. Lane, Anh-Thu Le, Timothy L. Scott, Qiushi Sun, Marc O. Warmoes, Ye Yang Nov 2017

Noninvasive Liquid Diet Delivery Of Stable Isotopes Into Mouse Models For Deep Metabolic Network Tracing, Ramon C. Sun, Teresa W.-M. Fan, Pan Deng, Richard M. Higashi, Andrew N. Lane, Anh-Thu Le, Timothy L. Scott, Qiushi Sun, Marc O. Warmoes, Ye Yang

Center for Environmental and Systems Biochemistry Faculty Publications

Delivering isotopic tracers for metabolic studies in rodents without overt stress is challenging. Current methods achieve low label enrichment in proteins and lipids. Here, we report noninvasive introduction of 13C6-glucose via a stress-free, ad libitum liquid diet. Using NMR and ion chromatography-mass spectrometry, we quantify extensive 13C enrichment in products of glycolysis, the Krebs cycle, the pentose phosphate pathway, nucleobases, UDP-sugars, glycogen, lipids, and proteins in mouse tissues during 12 to 48 h of 13C6-glucose feeding. Applying this approach to patient-derived lung tumor xenografts (PDTX), we show that the liver supplies glucose-derived Gln …


Probing The Metabolic Phenotype Of Breast Cancer Cells By Multiple Tracer Stable Isotope Resolved Metabolomics, Andrew N. Lane, Julie Tan, Yali Wang, Jun Yan, Richard M. Higashi, Teresa W. -M. Fan Sep 2017

Probing The Metabolic Phenotype Of Breast Cancer Cells By Multiple Tracer Stable Isotope Resolved Metabolomics, Andrew N. Lane, Julie Tan, Yali Wang, Jun Yan, Richard M. Higashi, Teresa W. -M. Fan

Center for Environmental and Systems Biochemistry Faculty Publications

Breast cancers vary by their origin and specific set of genetic lesions, which gives rise to distinct phenotypes and differential response to targeted and untargeted chemotherapies. To explore the functional differences of different breast cell types, we performed Stable Isotope Resolved Metabolomics (SIRM) studies of one primary breast (HMEC) and three breast cancer cells (MCF-7, MDAMB-231, and ZR75-1) having distinct genotypes and growth characteristics, using 13C6-glucose, 13C-1+2-glucose, 13C5,15N2-Gln, 13C3-glycerol, and 13C8-octanoate as tracers. These tracers were designed to probe the central energy producing …


Chloroformate Derivatization For Tracing The Fate Of Amino Acids In Cells And Tissues By Multiple Stable Isotope Resolved Metabolomics (Msirm), Ye Yang, Teresa W. -M. Fan, Andrew N. Lane, Richard M. Higashi Jul 2017

Chloroformate Derivatization For Tracing The Fate Of Amino Acids In Cells And Tissues By Multiple Stable Isotope Resolved Metabolomics (Msirm), Ye Yang, Teresa W. -M. Fan, Andrew N. Lane, Richard M. Higashi

Center for Environmental and Systems Biochemistry Faculty Publications

Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different …


Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (Sirm), Ronald C. Bruntz, Andrew N. Lane, Richard M. Higashi, Teresa W. -M. Fan Jun 2017

Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (Sirm), Ronald C. Bruntz, Andrew N. Lane, Richard M. Higashi, Teresa W. -M. Fan

Center for Environmental and Systems Biochemistry Faculty Publications

Metabolic reprogramming is a hallmark of cancer. The changes in metabolism are adaptive to permit proliferation, survival, and eventually metastasis in a harsh environment. Stable isotope-resolved metabolomics (SIRM) is an approach that uses advanced approaches of NMR and mass spectrometry to analyze the fate of individual atoms from stable isotope-enriched precursors to products to deduce metabolic pathways and networks. The approach can be applied to a wide range of biological systems, including human subjects. This review focuses on the applications of SIRM to cancer metabolism and its use in understanding drug actions.


A Fast And Efficient Python Library For Interfacing With The Biological Magnetic Resonance Data Bank, Andrey Smelter, Morgan Astra, Hunter N. B. Moseley Mar 2017

A Fast And Efficient Python Library For Interfacing With The Biological Magnetic Resonance Data Bank, Andrey Smelter, Morgan Astra, Hunter N. B. Moseley

Center for Environmental and Systems Biochemistry Faculty Publications

Background: The Biological Magnetic Resonance Data Bank (BMRB) is a public repository of Nuclear Magnetic Resonance (NMR) spectroscopic data of biological macromolecules. It is an important resource for many researchers using NMR to study structural, biophysical, and biochemical properties of biological macromolecules. It is primarily maintained and accessed in a flat file ASCII format known as NMR-STAR. While the format is human readable, the size of most BMRB entries makes computer readability and explicit representation a practical requirement for almost any rigorous systematic analysis.

Results:To aid in the use of this public resource, we have developed a package called …