Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 52 of 52

Full-Text Articles in Medicine and Health Sciences

Therapeutic Targeting Of Replicative Immortality, Paul Yaswen, Karen L. Mackenzie, W. Nicol Keith, Patricia Hentosh, Francis Rodier, Jiyue Zhu, Gary L. Firestone, Ander Matheu, Amancio Carnero, Alan Bilsland Jan 2015

Therapeutic Targeting Of Replicative Immortality, Paul Yaswen, Karen L. Mackenzie, W. Nicol Keith, Patricia Hentosh, Francis Rodier, Jiyue Zhu, Gary L. Firestone, Ander Matheu, Amancio Carnero, Alan Bilsland

School of Medical Diagnostics & Translational Sciences Faculty Publications

One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite …


Designing A Broad-Spectrum Integrative Approach For Cancer Prevention And Treatment, Keith I. Block, Charlotte Gyllenhaal, Leroy Lowe, Amedeo Amedei, A.R.M. Ruhul Amin, Amr Amin, Katia Aquilano, Jack Arbiser, Alexandra Arreola, Alla Arzumanyan, Patricia Hentosh Jan 2015

Designing A Broad-Spectrum Integrative Approach For Cancer Prevention And Treatment, Keith I. Block, Charlotte Gyllenhaal, Leroy Lowe, Amedeo Amedei, A.R.M. Ruhul Amin, Amr Amin, Katia Aquilano, Jack Arbiser, Alexandra Arreola, Alla Arzumanyan, Patricia Hentosh

School of Medical Diagnostics & Translational Sciences Faculty Publications

Targeted therapies and the consequent adoption of “personalized” oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity “broad-spectrum” therapeutic …


A Potential Mechanism For Extracellular Matrix Induction Of Breast Cancer Cell Normality, Robert D. Bruno, Gilbert H. Smith Jan 2014

A Potential Mechanism For Extracellular Matrix Induction Of Breast Cancer Cell Normality, Robert D. Bruno, Gilbert H. Smith

School of Medical Diagnostics & Translational Sciences Faculty Publications

Extracellular matrix proteins from embryonic mesenchyme have a normalizing effect on cancer cells in vitro and slow tumor growth in vivo. This concept is suggestive of a new method for controlling the growth and spread of existing cancer cells in situ and indicates the possibility that extracellular proteins and/or embryonic mesenchymal fibroblasts may represent a fertile subject for study of new anti-cancer treatments.


Paracrine-Rescued Lobulogenesis In Chimeric Outgrowths Comprising Progesterone-Receptor-Null Mammary Epithelium And Redirected Wild-Type Testicular Cells, Robert D. Bruno, Corinne A. Boulanger, Sonia M. Rosenfield, Lisa H. Anderson, John P. Lydon, Gilbert H. Smith Jan 2014

Paracrine-Rescued Lobulogenesis In Chimeric Outgrowths Comprising Progesterone-Receptor-Null Mammary Epithelium And Redirected Wild-Type Testicular Cells, Robert D. Bruno, Corinne A. Boulanger, Sonia M. Rosenfield, Lisa H. Anderson, John P. Lydon, Gilbert H. Smith

School of Medical Diagnostics & Translational Sciences Faculty Publications

We have previously shown that non-mammary and tumorigenic cells can respond to the signals of the mammary niche and alter their cell fate to that of mammary epithelial progenitor cells. Here we tested the hypothesis that paracrine signals from mammary epithelial cells expressing progesterone receptor (PR) are dispensable for redirection of testicular cells, and that re-directed wild-type testicular-derived mammary cells can rescue lobulogenesis of PR-null mammary epithelium by paracrine signaling during pregnancy. We injected PR-null epithelial cells mixed with testicular cells from wild-type adult male mice into cleared fat-pads of recipient mice. The testicular cells were redirected in vivo to …


Electrotransfer Of Single-Stranded Or Double-Stranded Dna Induces Complete Regression Of Palpable B16.F10 Mouse Melanomas, Loree Heller, Vesba Todorovic, Maja Cemazar Dec 2013

Electrotransfer Of Single-Stranded Or Double-Stranded Dna Induces Complete Regression Of Palpable B16.F10 Mouse Melanomas, Loree Heller, Vesba Todorovic, Maja Cemazar

Bioelectrics Publications

Enhanced tumor delivery of plasmid DNA with electric pulses in vivo has been confirmed in many preclinical models. Intratumor electrotransfer of plasmids encoding therapeutic molecules has reached Phase II clinical trials. In multiple preclinical studies, a reduction in tumor growth, increased survival or complete tumor regression have been observed in control groups in which vector or backbone plasmid DNA electrotransfer was performed. This study explores factors that could produce this antitumor effect. The specific electrotransfer pulse protocol employed significantly potentiated the regression. Tumor regression was observed after delivery of single-stranded or double-stranded DNA with or without CpG motifs in both …


Late Developing Mammary Tumors And Hyperplasia Induced By A Low-Oncogenic Variant Of Mouse Mammary Tumor Virus (Mmtv) Express Genes Identical To Those Induced By Canonical Mmtv, Robert D. Bruno Jan 2013

Late Developing Mammary Tumors And Hyperplasia Induced By A Low-Oncogenic Variant Of Mouse Mammary Tumor Virus (Mmtv) Express Genes Identical To Those Induced By Canonical Mmtv, Robert D. Bruno

School of Medical Diagnostics & Translational Sciences Faculty Publications

Background: The canonical milk-transmitted mouse mammary tumor virus (MMTV) of C3H mice (C3H-MMTV) rapidly induces tumors in 90% of infected animals by 8 months of age. Pro-viral insertions of C3H-MMTV into genomic DNA results in the overexpression of common core insertion site (CIS) genes, including Wnt1/10b, Rspo2, and Fgf3. Conversely, infection by either the endogenous Mtv-1 virus (in C3Hf) or the exogenous nodule-inducing virus (NIV) (in Balb/c NIV) induces premalignant mammary lesions and tumors with reduced incidence and longer latency than C3H-MMTV. Here, we asked whether Mtv-1/NIV affected the expression of core CIS genes.

Findings: We confirmed the presence of …


Novel Report Of Expression And Function Of Cd97 In Malignant Gliomas: Correlation With Wilms Tumor 1 Expression And Glioma Cell Invasiveness Laboratory Investigation, Archana Chidambaram, Helen L. Fillmore, Timothy E. Van Meter, Catherine I. Dumur, William C. Broaddus Jan 2012

Novel Report Of Expression And Function Of Cd97 In Malignant Gliomas: Correlation With Wilms Tumor 1 Expression And Glioma Cell Invasiveness Laboratory Investigation, Archana Chidambaram, Helen L. Fillmore, Timothy E. Van Meter, Catherine I. Dumur, William C. Broaddus

Office of Research Faculty & Staff Publications

Object. The Wilms tumor 1 (WT1) protein—a developmentally regulated transcription factor—is aberrantly expressed in gliomas and promotes their malignant phenotype. However, little is known about the molecular allies that help it mediate its oncogenic functions in glioma cells.

Methods. The authors used short interfering RNA (siRNA) to suppress WT1 expression in glioblastoma (GBM) cells and evaluated the effect of this on GBM cell invasiveness. Gene expression analysis was then used to identify the candidate genes that were altered as a result of WT1 silencing. One candidate target, CD97, was then selected for further investigation into its role by suppressing …


Bnnt- Mediated Irreversible Electroporation: It's Potential On Cancer Cells, V. Raffa, C. Riggio, M. W. Smith, K. C. Jordon, W. Cao, A. Cuschieri Jan 2012

Bnnt- Mediated Irreversible Electroporation: It's Potential On Cancer Cells, V. Raffa, C. Riggio, M. W. Smith, K. C. Jordon, W. Cao, A. Cuschieri

Applied Research Center Publications

Irreversible lethal electroporation (IRE) is a new non-thermal ablation modality that uses short pulses of high amplitude static electric fields (up 1000V/cm) to create irreversible pores in the cell membrane, thus, causing cell death. Recently, IRE has emerged as a promising clinical modality for cancer disease treatment. Here, we investigated the responses of tumour human He La cells when subjected to IRE in the presence of BNNTs. These consist of tiny tubes of B and N atoms (arranged in hexagons) with diameters ranging from a 1 to 3 nanometres and lengths <2 μm. BNNTs have attracted wide attention because of their unique electrical properties. We speculate that BNNTs, when interacting with cells exposed to static electrical fields, amplify locally the electric field, leading to cell death. In this work, electroporation assays were performed with a commercial electroporator using the cell-specific protocol suggested by the supplier (exponential decay wave, time constant 20ms) with the specific aim to compare IRE in absence and in presence of BNNTs. We observed that BNNTs have the capacity to decrease substantially the voltage required for IRE. When cells were pulsed at 800V/cm, we observed a 2,2-fold reduction in cell survival in the presence of BNNTs compared to controls. We conclude that the death of the tumour cells exposed to IRE is strongly enhanced in the presence of BNNTs, indicating their potential therapeutic application.


Targeted Identification Of Metastasis-Associated Cell-Surface Sialoglycoproteins In Prostate Cancer, Lifang Yang, Julius O. Nyalwidhe, Sigi Guo, Richard R. Drake, O. John Semmes Jan 2011

Targeted Identification Of Metastasis-Associated Cell-Surface Sialoglycoproteins In Prostate Cancer, Lifang Yang, Julius O. Nyalwidhe, Sigi Guo, Richard R. Drake, O. John Semmes

Bioelectrics Publications

Covalent attachment of carbohydrates to proteins is one of the most common post-translational modifications. At the cell surface, sugar moieties of glycoproteins contribute to molecular recognition events involved in cancer metastasis. We have combined glycan metabolic labeling with mass spectrometry analysis to identify and characterize metastasis-associated cell surface sialoglycoproteins. Our model system used syngeneic prostate cancer cell lines derived from PC3 (N2, nonmetastatic, and ML2, highly metastatic). The metabolic incorporation of AC4ManNAz and subsequent specific labeling of cell surface sialylation was confirmed by flow cytometry and confocal microscopy. Affinity isolation of the modified sialic-acid containing cell surface proteins …


Apoptosis Initiation And Angiogenesis Inhibition: Melanoma Targets For Nanosecond Pulsed Electric Fields, Xinhua Chen, Juergen F. Kolb, R. James Swanson, Karl H. Schoenbach, Stephen J. Beebe Jan 2010

Apoptosis Initiation And Angiogenesis Inhibition: Melanoma Targets For Nanosecond Pulsed Electric Fields, Xinhua Chen, Juergen F. Kolb, R. James Swanson, Karl H. Schoenbach, Stephen J. Beebe

Bioelectrics Publications

Many effective anti-cancer strategies target apoptosis and angiogenesis mechanisms. Applications of non-ionizing, nanosecond pulsed electric fields (nsPEFs) induce apoptosis in vitro and eliminate cancer in vivo; however in vivo mechanisms require closer analysis. These studies investigate nsPEF-induced apoptosis and anti-angiogenesis examined by fluorescent microscopy, immunoblots, and morphology. Six hours after treatment with one hundred 300 ns pulses at 40 kV/cm, cells transiently expressed active caspases indicating that caspase-mediated mechanisms. Three hours after treatment transient peaks in Histone 2AX phosphorylation coincided with terminal deoxynucleotidyl transferase dUTP nick end labeling positive cells and pyknotic nuclei, suggesting caspase-independent mechanisms on nuclei/DNA. Large …


Plasmid Injection And Application Of Electric Pulses Alter Endogenous Mrna And Protein Expression In B16.F10 Mouse Melanomas, L. C. Heller, Y. L. Cruz, B. Ferraro, H. Yang, R. Heller Jan 2010

Plasmid Injection And Application Of Electric Pulses Alter Endogenous Mrna And Protein Expression In B16.F10 Mouse Melanomas, L. C. Heller, Y. L. Cruz, B. Ferraro, H. Yang, R. Heller

Bioelectrics Publications

The application of electric pulses to tissues causes cell membrane destabilization, allowing exogenous molecules to enter the cells. This delivery technique can be used for plasmid gene therapy. Reporter gene expression after plasmid delivery with eight representative published protocols was compared in B16.F10 mouse melanoma tumors. This expression varied significantly based on the pulse parameters utilized for delivery. To observe the possible influence of plasmid injection and/or pulse application on endogenous gene expression, levels of stress-related mRNAs 4 and 24 h after delivery were determined by PCR array. Increases in mRNA levels for several inflammatory chemokines and cytokines were observed …


A New Pulsed Electric Field Therapy For Melanoma Disrupts The Tumor's Blood Supply And Causes Complete Remission Without Recurrence, Richard Nuccitelli, Xinhua Chen, Andrei G. Pakhomov, Wallace H. Baldwin, Saleh Sheikh, Jennifer L. Pomicter, Wei Ren, Chris Osgood, R. James Swanson, Juergen F. Kolb, Stephen J. Beebe, Karl H. Schoenbach Jan 2009

A New Pulsed Electric Field Therapy For Melanoma Disrupts The Tumor's Blood Supply And Causes Complete Remission Without Recurrence, Richard Nuccitelli, Xinhua Chen, Andrei G. Pakhomov, Wallace H. Baldwin, Saleh Sheikh, Jennifer L. Pomicter, Wei Ren, Chris Osgood, R. James Swanson, Juergen F. Kolb, Stephen J. Beebe, Karl H. Schoenbach

Bioelectrics Publications

We have discovered a new, ultrafast therapy for treating skin cancer that is extremely effective with a total electric field exposure time of only 180 mu sec. The application of 300 high-voltage (40 kV/cm), ultrashort (300 nsec) electrical pulses to murine melanomas in vivo triggers both necrosis and apoptosis, resulting in complete tumor remission within an average of 47 days in the 17 animals treated. None of these melanomas recurred during a 4-month period after the initial melanoma had disappeared. These pulses generate small, long-lasting, rectifying nanopores in the plasma membrane of exposed cells, resulting in increased membrane permeability to …


Potential For Stimulating Host Anti-Tumor Immune Response Via Rnai-Mediated Local Foxp3 Knockdown, N. Klaiber Jan 2007

Potential For Stimulating Host Anti-Tumor Immune Response Via Rnai-Mediated Local Foxp3 Knockdown, N. Klaiber

Chemistry & Biochemistry Faculty Publications

Neoplastic growths represent a unique challenge for the host immune system. As they are indeed derived from self, many of the same mechanisms operating to prevent autoimmunity also provide an umbrella beneath which malignant cells are free to proliferate.1 Central among these immune regulatory boundaries are an influential subset of lymphocytes known as T regs. Hypothesized to exist decades ago, yet eluding definitive characterization until relatively recently, T regs have been demonstrated to play a crucial role in the proper functioning of the immune system as a whole. They may also, however, represent one of the primary obstacles to successful …


Evaluation Of Toxicity Following Electrically Mediated Interleukin-12 Gene Delivery In A B16 Mouse Melanoma Model, Loree Heller, Kathleen Merkler, Jeffrey Westover, Yolmari Cruz, Domenico Coppola, Kaaron Benson, Adil Daud, Richard Heller May 2006

Evaluation Of Toxicity Following Electrically Mediated Interleukin-12 Gene Delivery In A B16 Mouse Melanoma Model, Loree Heller, Kathleen Merkler, Jeffrey Westover, Yolmari Cruz, Domenico Coppola, Kaaron Benson, Adil Daud, Richard Heller

Bioelectrics Publications

PURPOSE: Interleukin-12 (IL-12) has potential as an immunotherapeutic agent for the treatment of cancer but is unfortunately associated with toxicity. Delivery of a plasmid encoding IL-12 with electroporation induces an antitumor effect in the B16 mouse melanoma model without serious side effects. To translate this observation to the clinic, an evaluation of toxicity was done in the mouse model.

EXPERIMENTAL DESIGN: Weight change, tumor response, blood chemistry and hematology values, and serum IL-12 levels were evaluated. Multiple tissues were analyzed histopathologically.

RESULTS: A pronounced reduction in tumor volume, including a large percentage of complete regressions, was observed after electrically mediated …


Increased Risk For Aplastic Anemia And Myelodysplastic Syndrome In Individuals Lacking Glutathione S-Transferase Genes, Joanne F. Sutton, Michael Stacey, William G. Kearns, Thomas S. Roeg, Neal S. Young, Johnson M. Liu Jan 2004

Increased Risk For Aplastic Anemia And Myelodysplastic Syndrome In Individuals Lacking Glutathione S-Transferase Genes, Joanne F. Sutton, Michael Stacey, William G. Kearns, Thomas S. Roeg, Neal S. Young, Johnson M. Liu

Bioelectrics Publications

BACKGROUND: Aplastic anemia (AA) and myelodysplastic syndrome (MDS) are marrow failure states that may be associated with chromosomal instability. An absence of the glutathione S-transferase (GST) enzyme may genetically predispose individuals to AA or MDS. PROCEDURE AND RESULTS: To test this hypothesis, we determined the GSTM1 and GSTT1 genotypes in a total of 196 patients using multiplex PCR. The GSTT1 null genotype was found to be overrepresented in Caucasian, Asian, and Hispanic patients with either AA or MDS. We confirmed a difference in the expected frequency of the GSTM1 null genotype in Caucasian MDS patients. The double null GSTM1/GSTT1 …


Implementation Of Gy-Eq For Deterministic Effects Limitation In Shield Design, John W. Wilson, Myung-Hee Y. Kim, Giovanni De Angelis, Francis A. Cucinotta, Nobuaki Yoshizawa, Francis F. Badavi Dec 2002

Implementation Of Gy-Eq For Deterministic Effects Limitation In Shield Design, John W. Wilson, Myung-Hee Y. Kim, Giovanni De Angelis, Francis A. Cucinotta, Nobuaki Yoshizawa, Francis F. Badavi

Mathematics & Statistics Faculty Publications

The NCRP has recently defined RBE values and a new quantity (Gy-Eq) for use in estimation of deterministic effects in space shielding and operations. The NCRP's RBE for neutrons is left ambiguous and not fully defined. In the present report we will suggest a complete definition of neutron RBE consistent with the NCRP recommendations and evaluate attenuation properties of deterministic effects (Gy-Eq) in comparison with other dosimetric quantities.


Electrically Mediated Delivery Of Vector Plasmid Dna Elicits An Antitumor Effect, L. Heller, D. Coppola Oct 2002

Electrically Mediated Delivery Of Vector Plasmid Dna Elicits An Antitumor Effect, L. Heller, D. Coppola

Bioelectrics Publications

In vivo electroporation is an efficient means of increasing plasmid DNA delivery to normal tissues, such as skin and muscle, as well as directly to tumors. In the experiments described here, plasmid DNA was delivered by in vivo electroporation to B16 mouse melanomas using two very different pulsing protocols. Reporter expression increased 21- or 42-fold, respectively with electroporation over injection alone. The growth of experimental melanomas with an approximate diameter of 4 mm on the day of treatment was monitored after electroporation delivery of reporter plasmid DNA. Remarkably, short-term complete regressions using one of these pulsing protocols occurred in up …


Electric Field Enhanced Plasmid Delivery To Liver Hepatocellular Carcinomas, Richard Gilbert, Mark J. Jaroszeski, Loree Heller, Richard Heller Oct 2002

Electric Field Enhanced Plasmid Delivery To Liver Hepatocellular Carcinomas, Richard Gilbert, Mark J. Jaroszeski, Loree Heller, Richard Heller

Bioelectrics Publications

Electric field enhanced molecular delivery for cancer research and treatment is a new technology that has demonstrated its effectiveness in clinical trials using bleomycin or cisplatin (Heller, R., Gilbert, R., Jaroszeski, M. J. Clinical applications of electrochemotherapy, Advanced Drug Delivery Reviews 35,119-129, 1999), as chemotherapeutic agents. The technology is being investigated in research applications for applicability as a method to enhance gene expression in a target tumor. Success is predicated on an appropriate effective electric field mediated delivery protocol that triggers significant appropriate gene expression duration and levels. An electric field mediated delivery protocol includes a set of conditions …


Effect Of Electrically Mediated Intratumor And Intramuscular Delivery Of A Plasmid Encoding Ifn Α On Visible B16 Mouse Melanomas, Loree C. Heller, Stephanie F. Ingram, M. Lee Lucas, Richard A. Gilbert, Richard Heller Jun 2002

Effect Of Electrically Mediated Intratumor And Intramuscular Delivery Of A Plasmid Encoding Ifn Α On Visible B16 Mouse Melanomas, Loree C. Heller, Stephanie F. Ingram, M. Lee Lucas, Richard A. Gilbert, Richard Heller

Bioelectrics Publications

Interferon α may be used as a single agent therapy for metastatic malignant melanoma or as an adjuvant to chemotherapy. Delivery of interferon α by gene therapy offers an alternative to recombinant protein therapy. Electrically mediated delivery enhances plasmid expression in a number of tissues, for instance skin, liver, muscle and tumors including melanomas. Here we compare the effect of delivery of a plasmid encoding mouse interferon α on growth of visible B16 mouse melanomas following electrically mediated delivery to muscle or directly to the tumor. Intratumoral delivery of interferon α plasmid not only slows melanoma growth, but induces complete, …


Il-12 Plasmid Delivery By In Vivo Electroporation For The Successful Treatment Of Established Subcutaneous B16.F10 Melanoma, M. Lee Lucus, Loree Heller, Domenico Coppola, Richard Heller Jan 2002

Il-12 Plasmid Delivery By In Vivo Electroporation For The Successful Treatment Of Established Subcutaneous B16.F10 Melanoma, M. Lee Lucus, Loree Heller, Domenico Coppola, Richard Heller

Bioelectrics Publications

Interleukin-12 (IL-12) has been used in numerous immunotherapy protocols against melanoma. However, delivery of IL-12 in the form of recombinant protein can result in severe toxicity, and gene therapy has had limited success against B16.F10 murine melanoma. The purpose of this study was to examine the effectiveness of in vivo electroporation for the delivery of plasmid DNA encoding IL-12 as an antitumor agent against B16.F10 melanoma. We treated mice bearing established B16.F10 melanoma tumors with intratumoral (i.t.) or intramuscular (i.m.) injections of a plasmid encoding IL-12, followed by in vivo electroporation. For i.t. treatments, we used an applicator containing six …


Electrically Mediated Plasmid Dna Delivery To Hepatocellular Carcinomas In Vivo, L. Heller, M. J. Jaroszeski, D. Coppola, C. Pottinger, R. Gilbert, Richard Heller May 2000

Electrically Mediated Plasmid Dna Delivery To Hepatocellular Carcinomas In Vivo, L. Heller, M. J. Jaroszeski, D. Coppola, C. Pottinger, R. Gilbert, Richard Heller

Bioelectrics Publications

Gene therapy by direct delivery of plasmid DNA has several advantages over viral gene transfer, but plasmid delivery is less efficient. In vivo electroporation has been used to enhance delivery of chemotherapeutic agents to tumors in both animal and human studies. Recently, this delivery technique has been extended to large molecules such as plasmid DNA. Here, the successful delivery of plasmids encoding reporter genes to rat hepatocellular carcinomas by in vivo electroporation is demonstrated.


A Logistic Model Of Periodic Chemotherapy, J. C. Panetta Jan 1995

A Logistic Model Of Periodic Chemotherapy, J. C. Panetta

Mathematics & Statistics Faculty Publications

A logistic differential equation with a time-varying periodic parameter is used to model the growth of cells, in particular cancer cells, in the presences of chemotherapeutic drugs. The chemotherapeutic effects are modeled by a periodic parameter that modifies the growth rate of the cell tissue. A negative growth rate represents the detrimental effects of the drugs. A simple criterion is obtained for the behavior of the chemotherapy.