Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences

PDF

Series

Mitochondria

Institution
Publication Year
Publication

Articles 31 - 60 of 133

Full-Text Articles in Medicine and Health Sciences

Mitochondrial Protective Effects Caused By The Administration Of Mefenamic Acid In Sepsis, Diogo Dominguini, Monique Michels, Leticia B Wessler, Emilio L Streck, Tatiana Barichello, Felipe Dal-Pizzol Nov 2022

Mitochondrial Protective Effects Caused By The Administration Of Mefenamic Acid In Sepsis, Diogo Dominguini, Monique Michels, Leticia B Wessler, Emilio L Streck, Tatiana Barichello, Felipe Dal-Pizzol

Student and Faculty Publications

The pathophysiology of sepsis may involve the activation of the NOD-type receptor containing the pyrin-3 domain (NLPR-3), mitochondrial and oxidative damages. One of the primary essential oxidation products is 8-oxoguanine (8-oxoG), and its accumulation in mitochondrial DNA (mtDNA) induces cell dysfunction and death, leading to the hypothesis that mtDNA integrity is crucial for maintaining neuronal function during sepsis. In sepsis, the modulation of NLRP-3 activation is critical, and mefenamic acid (MFA) is a potent drug that can reduce inflammasome activity, attenuating the acute cerebral inflammatory process. Thus, this study aimed to evaluate the administration of MFA and its implications for …


All The Brain's A Stage For Serotonin: The Forgotten Story Of Serotonin Diffusion Across Cell Membranes, Paul W. Andrews, Catherine Bosyj, Luke Brenton, Laura Green, Paul J. Gasser, Christopher A. Lowry, Virginia M. Pickel Nov 2022

All The Brain's A Stage For Serotonin: The Forgotten Story Of Serotonin Diffusion Across Cell Membranes, Paul W. Andrews, Catherine Bosyj, Luke Brenton, Laura Green, Paul J. Gasser, Christopher A. Lowry, Virginia M. Pickel

Biomedical Sciences Faculty Research and Publications

In the conventional model of serotonin neurotransmission, serotonin released by neurons in the midbrain raphe nuclei exerts its actions on forebrain neurons by interacting with a large family of post-synaptic receptors. The actions of serotonin are terminated by active transport of serotonin back into the releasing neuron, which is mediated by the serotonin reuptake transporter (SERT). Because SERT is expressed pre-synaptically and is widely thought to be the only serotonin transporter in the forebrain, the conventional model does not include serotonin transport into post-synaptic neurons. However, a large body of evidence accumulating since the 1970s has shown that serotonin, despite …


Mesoscale Structure-Function Relationships In Mitochondrial Transcriptional Condensates, Marina Feric, Azadeh Sarfallah, Furqan Dar, Dmitry Temiakov, Rohit V. Pappu, Tom Misteli Oct 2022

Mesoscale Structure-Function Relationships In Mitochondrial Transcriptional Condensates, Marina Feric, Azadeh Sarfallah, Furqan Dar, Dmitry Temiakov, Rohit V. Pappu, Tom Misteli

Department of Biochemistry and Molecular Biology Faculty Papers

In live cells, phase separation is thought to organize macromolecules into membraneless structures known as biomolecular condensates. Here, we reconstituted transcription in condensates from purified mitochondrial components using optimized in vitro reaction conditions to probe the structure-function relationships of biomolecular condensates. We find that the core components of the mt-transcription machinery form multiphasic, viscoelastic condensates in vitro. Strikingly, the rates of condensate-mediated transcription are substantially lower than in solution. The condensate-mediated decrease in transcriptional rates is associated with the formation of vesicle-like structures that are driven by the production and accumulation of RNA during transcription. The generation of RNA alters …


A New Pathogenic Polg Variant, S Nicholas Russo, Ekta G Shah, William C Copeland, Mary Kay Koenig Sep 2022

A New Pathogenic Polg Variant, S Nicholas Russo, Ekta G Shah, William C Copeland, Mary Kay Koenig

Student and Faculty Publications

POLG gene mutations are the most common causes of inherited mitochondrial disorders. The enzyme produced by this gene is responsible for the replication and repair of mitochondrial DNA. To date, around 300 pathogenic variants have been described in this gene. The resulting clinical outcomes of POLG mutations are widely variable in both phenotype and severity. There is considerable overlap in the phenotype of the so-called POLG syndromes with no clear genotype-phenotype correlation. Here we describe a newly discovered pathogenic variant in the POLG gene in a 7-year-old male that died of uncontrollable refractory status epilepticus. Genetic epilepsy panel sequencing identified …


The Uprmt Preserves Mitochondrial Import To Extend Lifespan, Nan Xin, Jenni Durieux, Chunxia Yang, Suzanne Wolff, Hyun-Eui Kim, Andrew Dillin Jul 2022

The Uprmt Preserves Mitochondrial Import To Extend Lifespan, Nan Xin, Jenni Durieux, Chunxia Yang, Suzanne Wolff, Hyun-Eui Kim, Andrew Dillin

Student and Faculty Publications

The mitochondrial unfolded protein response (UPRmt) is dedicated to promoting mitochondrial proteostasis and is linked to extreme longevity. The key regulator of this process is the transcription factor ATFS-1, which, upon UPRmt activation, is excluded from the mitochondria and enters the nucleus to regulate UPRmt genes. However, the repair proteins synthesized as a direct result of UPRmt activation must be transported into damaged mitochondria that had previously excluded ATFS-1 owing to reduced import efficiency. To address this conundrum, we analyzed the role of the import machinery when the UPRmt was induced. Using in vitro and in vivo analysis of mitochondrial …


Genetically Encoded Atp Biosensors For Direct Monitoring Of Cellular Atp Dynamics, Donnell White, Qinglin Yang Jun 2022

Genetically Encoded Atp Biosensors For Direct Monitoring Of Cellular Atp Dynamics, Donnell White, Qinglin Yang

School of Medicine Faculty Publications

Adenosine 5′-triphosphate, or ATP, is the primary molecule for storing and transferring energy in cells. ATP is mainly produced via oxidative phosphorylation in mitochondria, and to a lesser extent, via glycolysis in the cytosol. In general, cytosolic glycolysis is the primary ATP producer in proliferative cells or cells subjected to hypoxia. On the other hand, mitochondria produce over 90% of cellular ATP in differentiated cells under normoxic conditions. Under pathological conditions, ATP demand rises to meet the needs of biosynthesis for cellular repair, signaling transduction for stress responses, and biochemical processes. These changes affect how mitochondria and cytosolic glycolysis function …


Lysosomal Zn 2+ Release Triggers Rapid, Mitochondria-Mediated, Non-Apoptotic Cell Death In Metastatic Melanoma, Wanlu Du, Mingxue Gu, Meiqin Hu, Timothy Nold, Prateeksunder Pinchi, Wei Chen, Michael Ryan, Ahmed Bannaga, Haoxing Xu Jun 2022

Lysosomal Zn 2+ Release Triggers Rapid, Mitochondria-Mediated, Non-Apoptotic Cell Death In Metastatic Melanoma, Wanlu Du, Mingxue Gu, Meiqin Hu, Timothy Nold, Prateeksunder Pinchi, Wei Chen, Michael Ryan, Ahmed Bannaga, Haoxing Xu

Medical Student Research Symposium

During tumor progression, lysosome function is often maladaptively upregulated to match the high energy demand required for cancer cell hyper-proliferation and invasion. Here, we report that mucolipin TRP channel 1 (TRPML1), a lysosomal Ca2+ and Zn2+ release channel that regulates multiple aspects of lysosome function, is dramatically upregulated in metastatic melanoma cells compared with normal cells. TRPML-specific synthetic agonists (ML-SAs) are sufficient to induce rapid (within hours) lysosomal Zn2+-dependent necrotic cell death in metastatic melanoma cells while completely sparing normal cells. ML-SA-caused mitochondria swelling and dysfunction lead to cellular ATP depletion. While pharmacological inhibition or genetic silencing of TRPML1 in …


Alcohol Impairs Immunometabolism And Promotes Naïve T Cell Differentiation To Pro-Inflammatory Th1 Cd4+ T Cells, Patrick M. Mcternan, Danielle E. Levitt, David A. Welsh, Liz Simon, Robert W. Siggins, Patricia E. Molina May 2022

Alcohol Impairs Immunometabolism And Promotes Naïve T Cell Differentiation To Pro-Inflammatory Th1 Cd4+ T Cells, Patrick M. Mcternan, Danielle E. Levitt, David A. Welsh, Liz Simon, Robert W. Siggins, Patricia E. Molina

School of Medicine Faculty Publications

CD4+ T cell differentiation to pro-inflammatory and immunosuppressive subsets depends on immunometabolism. Pro-inflammatory CD4+ subsets rely on glycolysis, while immunosuppressive Treg cells require functional mitochondria for their differentiation and function. Previous pre-clinical studies have shown that ethanol (EtOH) administration increases pro-inflammatory CD4+ T cell subsets; whether this shift in immunophenotype is linked to alterations in CD4+ T cell metabolism had not been previously examined. The objective of this study was to determine whether ethanol alters CD4+ immunometabolism, and whether this affects CD4+ T cell differentiation. Naïve human CD4+ T cells were plated on anti-CD3 coated plates with soluble anti-CD28, and …


Acute Oxygen-Sensing Via Mitochondria-Generated Temperature Transients In Rat Carotid Body Type I Cells, Ryan J. Rakoczy, Clay M. Schiebrel, Christopher N. Wyatt Apr 2022

Acute Oxygen-Sensing Via Mitochondria-Generated Temperature Transients In Rat Carotid Body Type I Cells, Ryan J. Rakoczy, Clay M. Schiebrel, Christopher N. Wyatt

Neuroscience, Cell Biology & Physiology Faculty Publications

The Carotid Bodies (CB) are peripheral chemoreceptors that detect changes in arterial oxygenation and, via afferent inputs to the brainstem, correct the pattern of breathing to restore blood gas homeostasis. Herein, preliminary evidence is presented supporting a novel oxygen-sensing hypothesis which suggests CB Type I cell “hypoxic signaling” may in part be mediated by mitochondria-generated thermal transients in TASK-channel-containing microdomains. Distances were measured between antibody-labeled mitochondria and TASK-potassium channels in primary rat CB Type I cells. Sub-micron distance measurements (TASK-1: 0.33 ± 0.04 µm, n = 47 vs TASK-3: 0.32 ± 0.03 µm, n = …


Long-Lasting Impairments In Quadriceps Mitochondrial Health, Muscle Size, And Phenotypic Composition Are Present After Non-Invasive Anterior Cruciate Ligament Injury, Steven M. Davi, Ahram Ahn, Mckenzie S. White, Timothy A. Butterfield, Kate Kosmac, Oh Sung Kwon, Lindsey K. Lepley Jan 2022

Long-Lasting Impairments In Quadriceps Mitochondrial Health, Muscle Size, And Phenotypic Composition Are Present After Non-Invasive Anterior Cruciate Ligament Injury, Steven M. Davi, Ahram Ahn, Mckenzie S. White, Timothy A. Butterfield, Kate Kosmac, Oh Sung Kwon, Lindsey K. Lepley

Center for Muscle Biology Faculty Publications

Introduction: Despite rigorous rehabilitation aimed at restoring muscle health, anterior cruciate ligament (ACL) injury is often hallmarked by significant long-term quadriceps muscle weakness. Derangements in mitochondrial function are a common feature of various atrophying conditions, yet it is unclear to what extent mitochondria are involved in the detrimental sequela of quadriceps dysfunction after ACL injury. Using a preclinical, non-invasive ACL injury rodent model, our objective was to explore the direct effect of an isolated ACL injury on mitochondrial function, muscle atrophy, and muscle phenotypic transitions.

Methods: A total of 40 male and female, Long Evans rats (16-week-old) were exposed to …


Mitophagy In Depression: Pathophysiology And Treatment Targets, Ashutosh Tripathi, Giselli Scaini, Tatiana Barichello, João Quevedo, Anilkumar Pillai Nov 2021

Mitophagy In Depression: Pathophysiology And Treatment Targets, Ashutosh Tripathi, Giselli Scaini, Tatiana Barichello, João Quevedo, Anilkumar Pillai

Student and Faculty Publications

Mitochondria, the 'powerhouse' of eukaryotic cells, play a key role in cellular homeostasis. However, defective mitochondria increase mitochondrial ROS (mtROS) production and cell-free mitochondrial DNA (mtDNA) release, leading to increased inflammation. Mitophagy is a vital pathway, which selectively removes defective mitochondria through the process of autophagy. Thus, an impairment in the mitophagy pathway might trigger the gradual accumulation of defective mitochondria. Accumulating evidence suggest that inflammation and mitochondrial dysfunction are linked to the pathogenesis of depression. In this article, we have reviewed the role of impaired mitophagy as a contributing factor in depression pathophysiology. Further, we have discussed the potential …


Mitochondrial Phenotypes In Purified Human Immune Cell Subtypes And Cell Mixtures, Shannon Rausser, Caroline Trumpff, Marlon A. Mcgill, Alex Junker, Wei Wang, Siu-Hong Ho, Anika Mitchell, Kalpita R. Karan, Catherine Monk, Suzanne C. Segerstrom, Rebecca G. Reed, Martin Picard Oct 2021

Mitochondrial Phenotypes In Purified Human Immune Cell Subtypes And Cell Mixtures, Shannon Rausser, Caroline Trumpff, Marlon A. Mcgill, Alex Junker, Wei Wang, Siu-Hong Ho, Anika Mitchell, Kalpita R. Karan, Catherine Monk, Suzanne C. Segerstrom, Rebecca G. Reed, Martin Picard

Psychology Faculty Publications

Using a high-throughput mitochondrial phenotyping platform to quantify multiple mitochondrial features among molecularly defined immune cell subtypes, we quantify the natural variation in mitochondrial DNA copy number (mtDNAcn), citrate synthase, and respiratory chain enzymatic activities in human neutrophils, monocytes, B cells, and naïve and memory T lymphocyte subtypes. In mixed peripheral blood mononuclear cells (PBMCs) from the same individuals, we show to what extent mitochondrial measures are confounded by both cell type distributions and contaminating platelets. Cell subtype-specific measures among women and men spanning four decades of life indicate potential age- and sex-related differences, including an age-related elevation in mtDNAcn, …


Multiple Autonomous Cell Death Suppression Strategies Ensure Cytomegalovirus Fitness, Pratyusha Mandal, Lynsey Nagrani, Liliana Hernandez, Anita Louise Mccormick, Christopher Dillon, Heather Koehler, Linda Roback, Emad S Alnemri, Douglas Green, Edward Mocarski Aug 2021

Multiple Autonomous Cell Death Suppression Strategies Ensure Cytomegalovirus Fitness, Pratyusha Mandal, Lynsey Nagrani, Liliana Hernandez, Anita Louise Mccormick, Christopher Dillon, Heather Koehler, Linda Roback, Emad S Alnemri, Douglas Green, Edward Mocarski

Department of Biochemistry and Molecular Biology Faculty Papers

Programmed cell death pathways eliminate infected cells and regulate infection-associated inflammation during pathogen invasion. Cytomegaloviruses encode several distinct suppressors that block intrinsic apoptosis, extrinsic apoptosis, and necroptosis, pathways that impact pathogenesis of this ubiquitous herpesvirus. Here, we expanded the understanding of three cell autonomous suppression mechanisms on which murine cytomegalovirus relies: (i) M38.5-encoded viral mitochon-drial inhibitor of apoptosis (vMIA), a BAX suppressor that functions in concert with M41.1-encoded viral inhibitor of BAK oligomerization (vIBO), (ii) M36-encoded viral inhibitor of caspase-8 activation (vICA), and (iii) M45-encoded viral inhibitor of RIP/RHIM activation (vIRA). Following infection of bone marrow-derived macrophages, the virus initially …


A Cancer Ubiquitome Landscape Identifies Metabolic Reprogramming As Target Of Parkin Tumor Suppression, Ekta Agarwal, Aaron R Goldman, Hsin-Yao Tang, Andrew V Kossenkov, Jagadish C Ghosh, Lucia Languino, Valentina Vaira, David W Speicher, Dario C Altieri Aug 2021

A Cancer Ubiquitome Landscape Identifies Metabolic Reprogramming As Target Of Parkin Tumor Suppression, Ekta Agarwal, Aaron R Goldman, Hsin-Yao Tang, Andrew V Kossenkov, Jagadish C Ghosh, Lucia Languino, Valentina Vaira, David W Speicher, Dario C Altieri

Department of Cancer Biology Faculty Papers

Changes in metabolism that affect mitochondrial and glycolytic networks are hallmarks of cancer, but their impact in disease is still elusive. Using global proteomics and ubiquitome screens, we now show that Parkin, an E3 ubiquitin ligase and key effector of mitophagy altered in Parkinson's disease, shuts off mitochondrial dynamics and inhibits the non-oxidative phase of the pentose phosphate pathway. This blocks tumor cell movements, creates metabolic and oxidative stress, and inhibits primary and metastatic tumor growth. Uniformly down-regulated in cancer patients, Parkin tumor suppression requires its E3 ligase function, is reversed by antioxidants, and is independent of mitophagy. These data …


Measuring Mitochondrial Respiration In Vivo: From Mouse To Human, Arthur Orchanian, Brennan Schilling, Bruce Berkowitz Phd Jan 2021

Measuring Mitochondrial Respiration In Vivo: From Mouse To Human, Arthur Orchanian, Brennan Schilling, Bruce Berkowitz Phd

Medical Student Research Symposium

Introduction: The mitochondrial energy ecosystem can be non-invasively interrogated in photoreceptors by combing a clinical tool, optical coherence tomography (OCT), with a mitochondrial protonophore (2,4 dinitrophenol, DNP). It remains unclear if only supra-clinical doses of DNP will be useful for mouse studies or if lower but clinically relevant doses of DNP would facilitate translation from mice to humans.

Methods: The experiment was a paired longitudinal design that took place over 2 days. On day 1, C57BL/6J mice were overnight dark adapted, then light-adapted for 5 h before OCT examination before regaining consciousness; a similar procedure was followed on day 2 …


Genetic Approach To Elucidate The Role Of Cyclophilin D In Traumatic Brain Injury Pathology, Ryan D. Readnower, W. Brad Hubbard, Olivia J. Kalimon, James W. Geddes, Patrick G. Sullivan Jan 2021

Genetic Approach To Elucidate The Role Of Cyclophilin D In Traumatic Brain Injury Pathology, Ryan D. Readnower, W. Brad Hubbard, Olivia J. Kalimon, James W. Geddes, Patrick G. Sullivan

Spinal Cord and Brain Injury Research Center Faculty Publications

Cyclophilin D (CypD) has been shown to play a critical role in mitochondrial permeability transition pore (mPTP) opening and the subsequent cell death cascade. Studies consistently demonstrate that mitochondrial dysfunction, including mitochondrial calcium overload and mPTP opening, is essential to the pathobiology of cell death after a traumatic brain injury (TBI). CypD inhibitors, such as cyclosporin A (CsA) or NIM811, administered following TBI, are neuroprotective and quell neurological deficits. However, some pharmacological inhibitors of CypD have multiple biological targets and, as such, do not directly implicate a role for CypD in arbitrating cell death after TBI. Here, we reviewed the …


Complete Chemical Structures Of Human Mitochondrial Trnas, Takeo Suzuki, Yuka Yashiro, Ittoku Kikuchi, Yuma Ishigami, Hironori Saito, Ikuya Matsuzawa, Shunpei Okada, Mari Mito, Shintaro Iwasaki, Ding Ma, Xuewei Zhao, Kana Asano, Huan Lin, Yohei Kirino, Yuriko Sakaguchi, Tsutomu Suzuki Aug 2020

Complete Chemical Structures Of Human Mitochondrial Trnas, Takeo Suzuki, Yuka Yashiro, Ittoku Kikuchi, Yuma Ishigami, Hironori Saito, Ikuya Matsuzawa, Shunpei Okada, Mari Mito, Shintaro Iwasaki, Ding Ma, Xuewei Zhao, Kana Asano, Huan Lin, Yohei Kirino, Yuriko Sakaguchi, Tsutomu Suzuki

Computational Medicine Center Faculty Papers

Mitochondria generate most cellular energy via oxidative phosphorylation. Twenty-two species of mitochondrial (mt-)tRNAs encoded in mtDNA translate essential subunits of the respiratory chain complexes. mt-tRNAs contain post-transcriptional modifications introduced by nuclear-encoded tRNA-modifying enzymes. They are required for deciphering genetic code accurately, as well as stabilizing tRNA. Loss of tRNA modifications frequently results in severe pathological consequences. Here, we perform a comprehensive analysis of post-transcriptional modifications of all human mt-tRNAs, including 14 previously-uncharacterized species. In total, we find 18 kinds of RNA modifications at 137 positions (8.7% in 1575 nucleobases) in 22 species of human mt-tRNAs. An up-to-date list of 34 …


Metformin Enhances Autophagy And Normalizes Mitochondrial Function To Alleviate Aging-Associated Inflammation, Leena P Bharath, Madhur Agrawal, Grace Mccambridge, Dequina A Nicholas, Hatice Hasturk, Jing Liu, Kai Jiang, Rui Liu, Zhenheng Guo, Jude Deeney, Caroline M Apovian, Jennifer Snyder-Cappione, Gregory S Hawk, Rebecca M Fleeman, Riley M F Pihl, Katherine Thompson, Anna C Belkina, Licong Cui, Elizabeth A Proctor, Philip A Kern, Barbara S Nikolajczyk Jul 2020

Metformin Enhances Autophagy And Normalizes Mitochondrial Function To Alleviate Aging-Associated Inflammation, Leena P Bharath, Madhur Agrawal, Grace Mccambridge, Dequina A Nicholas, Hatice Hasturk, Jing Liu, Kai Jiang, Rui Liu, Zhenheng Guo, Jude Deeney, Caroline M Apovian, Jennifer Snyder-Cappione, Gregory S Hawk, Rebecca M Fleeman, Riley M F Pihl, Katherine Thompson, Anna C Belkina, Licong Cui, Elizabeth A Proctor, Philip A Kern, Barbara S Nikolajczyk

Student and Faculty Publications

Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4+ T cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. T cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in T cells from young subjects and activated the Th17 …


In Vivo Evidence Of Exosome-Mediated Aβ Neurotoxicity, Ahmed Elsherbini, Haiyan Qin, Zhihui Zhu, Priyanka Tripathi, Simone M. Crivelli, Erhard Bieberich Jul 2020

In Vivo Evidence Of Exosome-Mediated Aβ Neurotoxicity, Ahmed Elsherbini, Haiyan Qin, Zhihui Zhu, Priyanka Tripathi, Simone M. Crivelli, Erhard Bieberich

Physiology Faculty Publications

No abstract provided.


Association Of Aβ With Ceramide-Enriched Astrosomes Mediates Aβ Neurotoxicity, Ahmed Elsherbini, Alexander S. Kirov, Michael B. Dinkins, Guanghu Wang, Haiyan Qin, Zhihui Zhu, Priyanka Tripathi, Simone M. Crivelli, Erhard Bieberich Apr 2020

Association Of Aβ With Ceramide-Enriched Astrosomes Mediates Aβ Neurotoxicity, Ahmed Elsherbini, Alexander S. Kirov, Michael B. Dinkins, Guanghu Wang, Haiyan Qin, Zhihui Zhu, Priyanka Tripathi, Simone M. Crivelli, Erhard Bieberich

Physiology Faculty Publications

Amyloid-β (Aβ) associates with extracellular vesicles termed exosomes. It is not clear whether and how exosomes modulate Aβ neurotoxicity in Alzheimer's disease (AD). We show here that brain tissue and serum from the transgenic mouse model of familial AD (5xFAD) and serum from AD patients contains ceramide-enriched and astrocyte-derived exosomes (termed astrosomes) that are associated with Aβ. In Neuro-2a cells, primary cultured neurons, and human induced pluripotent stem cell-derived neurons, Aβ-associated astrosomes from 5xFAD mice and AD patient serum were specifically transported to mitochondria, induced mitochondrial clustering, and upregulated the fission protein Drp-1 at a concentration corresponding to 5 femtomoles …


Postnatal Catch-Up Growth Leads To Higher P66shc And Mitochondrial Dysfunction., Shelby Oke, Gurjeev Sohi, Daniel Barry Hardy Jan 2020

Postnatal Catch-Up Growth Leads To Higher P66shc And Mitochondrial Dysfunction., Shelby Oke, Gurjeev Sohi, Daniel Barry Hardy

Physiology and Pharmacology Publications

Epidemiological data suggest an inverse relationship between birth weight and long-term metabolic deficits, which is exacerbated by postnatal catch-up growth. We have previously demonstrated that rat offspring subject to maternal protein restriction (MPR) followed by catch-up growth exhibit impaired hepatic function and ER stress. Given that mitochondrial dysfunction is associated with various metabolic pathologies, we hypothesized that altered expression of p66Shc, a gatekeeper of oxidative stress and mitochondrial function, contributes to the hepatic defects observed in MPR offspring. To test this hypothesis, pregnant Wistar rats were fed a control (20% protein) diet or an isocaloric low protein (8%; LP) diet …


Mitochondrial Metabolism In Astrocytes Regulates Brain Bioenergetics, Neurotransmission And Redox Balance, Jordan Rose, Christian Brian, Aglaia Pappa, Mihalis I. Panayiotidi, Rodrigo Franco Jan 2020

Mitochondrial Metabolism In Astrocytes Regulates Brain Bioenergetics, Neurotransmission And Redox Balance, Jordan Rose, Christian Brian, Aglaia Pappa, Mihalis I. Panayiotidi, Rodrigo Franco

School of Veterinary and Biomedical Sciences: Faculty Publications

In the brain, mitochondrial metabolism has been largely associated with energy production, and its dysfunction is linked to neuronal cell loss. However, the functional role of mitochondria in glial cells has been poorly studied. Recent reports have demonstrated unequivocally that astrocytes do not require mitochondria to meet their bioenergetics demands. Then, the question remaining is, what is the functional role of mitochondria in astrocytes? In this work, we review current evidence demonstrating that mitochondrial central carbon metabolism in astrocytes regulates overall brain bioenergetics, neurotransmitter homeostasis and redox balance. Emphasis is placed in detailing carbon source utilization (glucose and fatty acids), …


Gasdermins In Apoptosis: New Players In An Old Game., Corey Rogers, Emad S. Alnemri Dec 2019

Gasdermins In Apoptosis: New Players In An Old Game., Corey Rogers, Emad S. Alnemri

Department of Biochemistry and Molecular Biology Faculty Papers

Apoptosis is a form of programmed cell death (PCD) that plays critical physiological roles in removing superfluous or dangerous cell populations that are unneeded or threatening to the health of the host organism. Although the molecular pathways leading to activation of the apoptotic program have been extensively studied and characterized starting in the 1970s, new evidence suggests that members of the gasdermin superfamily are novel pore-forming proteins that augment apoptosis by permeabilizing the mitochondria and participate in the final stages of the apoptotic program by inducing secondary necrosis/pyroptosis. These findings may explain outstanding questions in the field such as why …


Multiple Mitochondrial Thioesterases Have Distinct Tissue And Substrate Specificity And Coa Regulation, Suggesting Unique Functional Roles., Carmen Bekeova, Lauren Anderson-Pullinger, Kevin Boye, Felix Boos, Yana Sharpadskaya, Johannes M Herrmann, Erin L. Seifert Dec 2019

Multiple Mitochondrial Thioesterases Have Distinct Tissue And Substrate Specificity And Coa Regulation, Suggesting Unique Functional Roles., Carmen Bekeova, Lauren Anderson-Pullinger, Kevin Boye, Felix Boos, Yana Sharpadskaya, Johannes M Herrmann, Erin L. Seifert

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Acyl-CoA thioesterases (Acots) hydrolyze fatty acyl-CoA esters. Acots in the mitochondrial matrix are poised to mitigate β-oxidation overload and maintain CoA availability. Several Acots associate with mitochondria, but whether they all localize to the matrix, are redundant, or have different roles is unresolved. Here, we compared the suborganellar localization, activity, expression, and regulation among mitochondrial Acots (Acot2, -7, -9, and -13) in mitochondria from multiple mouse tissues and from a model of Acot2 depletion. Acot7, -9, and -13 localized to the matrix, joining Acot2 that was previously shown to localize there. Mitochondria from heart, skeletal muscle, brown adipose tissue, and …


Mitochondrial Somatic Mutations And The Lack Of Viral Genomic Variation In Recurrent Respiratory Papillomatosis, Yuhan Hao, Ryan Ruiz, Liying Yang, Antonio Galvao Neto, Milan R Amin, Dervla Kelly, Stratos Achlatis, Scott Roof, Renjie Bing, Kasthuri Kannan, Stuart M Brown, Zhiheng Pei, Ryan C Branski Nov 2019

Mitochondrial Somatic Mutations And The Lack Of Viral Genomic Variation In Recurrent Respiratory Papillomatosis, Yuhan Hao, Ryan Ruiz, Liying Yang, Antonio Galvao Neto, Milan R Amin, Dervla Kelly, Stratos Achlatis, Scott Roof, Renjie Bing, Kasthuri Kannan, Stuart M Brown, Zhiheng Pei, Ryan C Branski

Student and Faculty Publications

Recurrent Respiratory Papillomatosis (RRP) is a rare disease of the aerodigestive tract caused by the Human Papilloma Virus (HPV) that manifests as profoundly altered phonatory and upper respiratory anatomy. Current therapies are primarily symptomatic; enhanced insight regarding disease-specific biology of RRP is critical to improved therapeutics for this challenging population. Multiplex PCR was performed on oral rinses collected from twenty-three patients with adult-onset RRP every three months for one year. Twenty-two (95.6%) subjects had an initial HPV positive oral rinse. Of those subjects, 77.2% had an additional positive oral rinse over 12 months. A subset of rinses were then compared …


Myc-Mediated Transcriptional Regulation Of The Mitochondrial Chaperone Trap1 Controls Primary And Metastatic Tumor Growth., Ekta Agarwal, Brian J. Altman, Jae Ho Seo, Jagadish C. Ghosh, Andrew V Kossenkov, Hsin-Yao Tang, Shiv Ram Krishn, Lucia R. Languino, Dmitry I. Gabrilovich, David W. Speicher, Chi V. Dang, Dario C. Altieri Jul 2019

Myc-Mediated Transcriptional Regulation Of The Mitochondrial Chaperone Trap1 Controls Primary And Metastatic Tumor Growth., Ekta Agarwal, Brian J. Altman, Jae Ho Seo, Jagadish C. Ghosh, Andrew V Kossenkov, Hsin-Yao Tang, Shiv Ram Krishn, Lucia R. Languino, Dmitry I. Gabrilovich, David W. Speicher, Chi V. Dang, Dario C. Altieri

Department of Cancer Biology Faculty Papers

The role of mitochondria in cancer continues to be debated, and whether exploitation of mitochondrial functions is a general hallmark of malignancy or a tumor- or context-specific response is still unknown. Using a variety of cancer cell lines and several technical approaches, including siRNA-mediated gene silencing, ChIP assays, global metabolomics and focused metabolite analyses, bioenergetics, and cell viability assays, we show that two oncogenic Myc proteins, c-Myc and N-Myc, transcriptionally control the expression of the mitochondrial chaperone TNFR-associated protein- 1 (TRAP1) in cancer. In turn, this Myc-mediated regulation preserved the folding and function of mitochondrial oxidative phosphorylation (OXPHOS) complex II …


Yeast Mitochondrial Protein Pet111p Binds Directly To Two Distinct Targets In Cox2 Mrna, Suggesting A Mechanism Of Translational Activation, Julia L Jones, Katharina B Hofmann, Andrew T Cowan, Dmitry Temiakov, Patrick Cramer, Michael Anikin May 2019

Yeast Mitochondrial Protein Pet111p Binds Directly To Two Distinct Targets In Cox2 Mrna, Suggesting A Mechanism Of Translational Activation, Julia L Jones, Katharina B Hofmann, Andrew T Cowan, Dmitry Temiakov, Patrick Cramer, Michael Anikin

Rowan-Virtua School of Osteopathic Medicine Departmental Research

The genes in mitochondrial DNA code for essential subunits of the respiratory chain complexes. In yeast, expression of mitochondrial genes is controlled by a group of gene-specific translational activators encoded in the nucleus. These factors appear to be part of a regulatory system that enables concerted expression of the necessary genes from both nuclear and mitochondrial genomes to produce functional respiratory complexes. Many of the translational activators are believed to act on the 5'-untranslated regions of target mRNAs, but the molecular mechanisms involved in this regulation remain obscure. In this study, we used a combination of in vivo and in …


Yeast Mitochondrial Protein Pet111p Binds Directly To Two Distinct Targets In Cox2 Mrna, Suggesting A Mechanism Of Translational Activation, Julia L Jones, Katharina B. Hofmann, Andrew T. Cowan, Dmitry Temiakov, Patrick Cramer, Michael Anikin May 2019

Yeast Mitochondrial Protein Pet111p Binds Directly To Two Distinct Targets In Cox2 Mrna, Suggesting A Mechanism Of Translational Activation, Julia L Jones, Katharina B. Hofmann, Andrew T. Cowan, Dmitry Temiakov, Patrick Cramer, Michael Anikin

Department of Biochemistry and Molecular Biology Faculty Papers

The genes in mitochondrial DNA code for essential subunits of the respiratory chain complexes. In yeast, expression of mitochondrial genes is controlled by a group of gene-specific translational activators encoded in the nucleus. These factors appear to be part of a regulatory system that enables concerted expression of the necessary genes from both nuclear and mitochondrial genomes to produce functional respiratory complexes. Many of the translational activators are believed to act on the 5'-untranslated regions of target mRNAs, but the molecular mechanisms involved in this regulation remain obscure. In this study, we used a combination of in vivo and in …


Δ9-Tetrahydrocannabinol Leads To Endoplasmic Reticulum Stress And Mitochondrial Dysfunction In Human Bewo Trophoblasts., Tina Lojpur, Zachary Easton, Sergio Raez-Villanueva, Steven Laviolette, Alison C Holloway, Daniel B Hardy May 2019

Δ9-Tetrahydrocannabinol Leads To Endoplasmic Reticulum Stress And Mitochondrial Dysfunction In Human Bewo Trophoblasts., Tina Lojpur, Zachary Easton, Sergio Raez-Villanueva, Steven Laviolette, Alison C Holloway, Daniel B Hardy

Physiology and Pharmacology Publications

While studies have demonstrated that the main psychoactive component of cannabis, Δ9-tetrahydrocannabinol (Δ9-THC) alone induces placental insufficiency and fetal growth restriction, the underlying mechanisms remain elusive. Given that both (i) endoplasmic reticulum (ER) stress in pregnancy and (ii) gestational exposure to Δ9-THC leads to placental deficiency, we hypothesized that Δ9-THC may directly induce placental ER stress, influencing trophoblast gene expression and mitochondrial function. BeWo human trophoblast cells treated with Δ9-THC (3-30 μM) led to a dose-dependent increase in all ER stress markers and CHOP; these effects could be blocked with CB1R/CB2R antagonists. Moreover, expression of ER stress-sensitive genes ERRγ, VEGFA, …


Gasdermin Pores Permeabilize Mitochondria To Augment Caspase-3 Activation During Apoptosis And Inflammasome Activation., Corey Rogers, Dan A. Erkes, Alexandria Nardone, Andrew E. Aplin, Teresa Fernandes-Alnemri, Emad S. Alnemri Apr 2019

Gasdermin Pores Permeabilize Mitochondria To Augment Caspase-3 Activation During Apoptosis And Inflammasome Activation., Corey Rogers, Dan A. Erkes, Alexandria Nardone, Andrew E. Aplin, Teresa Fernandes-Alnemri, Emad S. Alnemri

Department of Biochemistry and Molecular Biology Faculty Papers

Gasdermin E (GSDME/DFNA5) cleavage by caspase-3 liberates the GSDME-N domain, which mediates pyroptosis by forming pores in the plasma membrane. Here we show that GSDME-N also permeabilizes the mitochondrial membrane, releasing cytochrome c and activating the apoptosome. Cytochrome c release and caspase-3 activation in response to intrinsic and extrinsic apoptotic stimuli are significantly reduced in GSDME-deficient cells comparing with wild type cells. GSDME deficiency also accelerates cell growth in culture and in a mouse model of melanoma. Phosphomimetic mutation of the highly conserved phosphorylatable Thr6 residue of GSDME, inhibits its pore-forming activity, thus uncovering a potential mechanism by which GSDME …