Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 82

Full-Text Articles in Medicine and Health Sciences

Systematic-Narrative Hybrid Literature Review: Crosstalk Between Gastrointestinal Renin-Angiotensin And Dopaminergic Systems In The Regulation Of Intestinal Permeability By Tight Junctions, Nadia Khan, Magdalena Kurnik-Łucka, Gniewomir Latacz, Krzysztof Gil May 2024

Systematic-Narrative Hybrid Literature Review: Crosstalk Between Gastrointestinal Renin-Angiotensin And Dopaminergic Systems In The Regulation Of Intestinal Permeability By Tight Junctions, Nadia Khan, Magdalena Kurnik-Łucka, Gniewomir Latacz, Krzysztof Gil

Journal Articles

In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin-angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin-angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both …


Hammerhead-Type Fxr Agonists Induce An Enhancer Rna Fincor That Ameliorates Nonalcoholic Steatohepatitis In Mice, Jinjing Chen, Ruoyu Wang, Feng Xiong, Hao Sun, Byron Kemper, Wenbo Li, Jongsook Kemper Apr 2024

Hammerhead-Type Fxr Agonists Induce An Enhancer Rna Fincor That Ameliorates Nonalcoholic Steatohepatitis In Mice, Jinjing Chen, Ruoyu Wang, Feng Xiong, Hao Sun, Byron Kemper, Wenbo Li, Jongsook Kemper

Journal Articles

The nuclear receptor, farnesoid X receptor (FXR/NR1H4), is increasingly recognized as a promising drug target for metabolic diseases, including nonalcoholic steatohepatitis (NASH). Protein-coding genes regulated by FXR are well known, but whether FXR also acts through regulation of long non-coding RNAs (lncRNAs), which vastly outnumber protein-coding genes, remains unknown. Utilizing RNA-seq and global run-on sequencing (GRO-seq) analyses in mouse liver, we found that FXR activation affects the expression of many RNA transcripts from chromatin regions bearing enhancer features. Among these we discovered a previously unannotated liver-enriched enhancer-derived lncRNA (eRNA), termed FXR-induced non-coding RNA (


Caldendrin Is A Repressor Of Piezo2 Channels And Touch Sensation In Mice, Josue A Lopez, Luis O Romero, Wai-Lin Kaung, J Wesley Maddox, Valeria Vásquez, Amy Lee Mar 2024

Caldendrin Is A Repressor Of Piezo2 Channels And Touch Sensation In Mice, Josue A Lopez, Luis O Romero, Wai-Lin Kaung, J Wesley Maddox, Valeria Vásquez, Amy Lee

Journal Articles

The sense of touch is crucial for cognitive, emotional, and social development and relies on mechanically activated (MA) ion channels that transduce force into an electrical signal. Despite advances in the molecular characterization of these channels, the physiological factors that control their activity are poorly understood. Here, we used behavioral assays, electrophysiological recordings, and various mouse strains (males and females analyzed separately) to investigate the role of the calmodulin-like Ca2+ sensor, caldendrin, as a key regulator of MA channels and their roles in touch sensation. In mice lacking caldendrin (Cabp1 KO), heightened responses to tactile stimuli correlate with enlarged …


A Mutation In F-Actin Polymerization Factor Suppresses The Distal Arthrogryposis Type 5 Piezo2 Pathogenic Variant In Caenorhabditis Elegans, Xiaofei Bai, Harold E Smith, Luis O Romero, Briar Bell, Valeria Vásquez, Andy Golden Feb 2024

A Mutation In F-Actin Polymerization Factor Suppresses The Distal Arthrogryposis Type 5 Piezo2 Pathogenic Variant In Caenorhabditis Elegans, Xiaofei Bai, Harold E Smith, Luis O Romero, Briar Bell, Valeria Vásquez, Andy Golden

Journal Articles

The mechanosensitive PIEZO channel family has been linked to over 26 disorders and diseases. Although progress has been made in understanding these channels at the structural and functional levels, the underlying mechanisms of PIEZO-associated diseases remain elusive. In this study, we engineered four PIEZO-based disease models using CRISPR/Cas9 gene editing. We performed an unbiased chemical mutagen-based genetic suppressor screen to identify putative suppressors of a conserved gain-of-function variant pezo-1[R2405P] that in human PIEZO2 causes distal arthrogryposis type 5 (DA5; p. R2718P). Electrophysiological analyses indicate that pezo-1(R2405P) is a gain-of-function allele. Using genomic mapping and whole-genome sequencing approaches, we identified a …


Crispr-Cas9-Based Functional Interrogation Of Unconventional Translatome Reveals Human Cancer Dependency On Cryptic Non-Canonical Open Reading Frames, Caishang Zheng, Yanjun Wei, Peng Zhang, Kangyu Lin, Dandan He, Hongqi Teng, Ganiraju Manyam, Zhao Zhang, Wen Liu, Hye Rin Lindsay Lee, Ximing Tang, Wei He, Nelufa Islam, Antrix Jain, Yulun Chiu, Shaolong Cao, Yarui Diao, Sherita Meyer-Gauen, Magnus Höök, Anna Malovannaya, Wenbo Li, Ming Hu, Wenyi Wang, Han Xu, Scott Kopetz, Yiwen Chen Dec 2023

Crispr-Cas9-Based Functional Interrogation Of Unconventional Translatome Reveals Human Cancer Dependency On Cryptic Non-Canonical Open Reading Frames, Caishang Zheng, Yanjun Wei, Peng Zhang, Kangyu Lin, Dandan He, Hongqi Teng, Ganiraju Manyam, Zhao Zhang, Wen Liu, Hye Rin Lindsay Lee, Ximing Tang, Wei He, Nelufa Islam, Antrix Jain, Yulun Chiu, Shaolong Cao, Yarui Diao, Sherita Meyer-Gauen, Magnus Höök, Anna Malovannaya, Wenbo Li, Ming Hu, Wenyi Wang, Han Xu, Scott Kopetz, Yiwen Chen

Journal Articles

Emerging evidence suggests that cryptic translation beyond the annotated translatome produces proteins with developmental or physiological functions. However, functions of cryptic non-canonical open reading frames (ORFs) in cancer remain largely unknown. To fill this gap and systematically identify colorectal cancer (CRC) dependency on non-canonical ORFs, we apply an integrative multiomic strategy, combining ribosome profiling and a CRISPR-Cas9 knockout screen with large-scale analysis of molecular and clinical data. Many such ORFs are upregulated in CRC compared to normal tissues and are associated with clinically relevant molecular subtypes. We confirm the in vivo tumor-promoting function of the microprotein SMIMP, encoded by a …


Genetic Separation Of Brca1 Functions Reveal Mutation-Dependent Polθ Vulnerabilities, John J. Krais, David J. Glass, Ilse Chudoba, Yifan Wang, Wanjuan Feng, Dennis Simpson, Pooja Patel, Zemin Liu, Ryan Neumann-Domer, Robert G. Betsch, Andrea J. Bernhardy, Alice M. Bradbury, Jason Conger, Wei-Ting Yueh, Joseph Nacson, Richard T. Pomerantz, Gaorav P. Gupta, Joseph R. Testa, Neil Johnson Nov 2023

Genetic Separation Of Brca1 Functions Reveal Mutation-Dependent Polθ Vulnerabilities, John J. Krais, David J. Glass, Ilse Chudoba, Yifan Wang, Wanjuan Feng, Dennis Simpson, Pooja Patel, Zemin Liu, Ryan Neumann-Domer, Robert G. Betsch, Andrea J. Bernhardy, Alice M. Bradbury, Jason Conger, Wei-Ting Yueh, Joseph Nacson, Richard T. Pomerantz, Gaorav P. Gupta, Joseph R. Testa, Neil Johnson

Department of Biochemistry and Molecular Biology Faculty Papers

Homologous recombination (HR)-deficiency induces a dependency on DNA polymerase theta (Polθ/Polq)-mediated end joining, and Polθ inhibitors (Polθi) are in development for cancer therapy. BRCA1 and BRCA2 deficient cells are thought to be synthetic lethal with Polθ, but whether distinct HR gene mutations give rise to equivalent Polθ-dependence, and the events that drive lethality, are unclear. In this study, we utilized mouse models with separate Brca1 functional defects to mechanistically define Brca1-Polθ synthetic lethality. Surprisingly, homozygous Brca1 mutant, Polq−/− cells were viable, but grew slowly and had chromosomal instability. Brca1 mutant cells proficient in DNA end resection were …


Structures Of Channelrhodopsin Paralogs In Peptidiscs Explain Their Contrasting K+ And Na+ Selectivities, Takefumi Morizumi, Kyumhyuk Kim, Hai Li, Elena G Govorunova, Oleg A Sineshchekov, Yumei Wang, Lei Zheng, Éva Bertalan, Ana-Nicoleta Bondar, Azam Askari, Leonid S Brown, John L Spudich, Oliver P Ernst Jul 2023

Structures Of Channelrhodopsin Paralogs In Peptidiscs Explain Their Contrasting K+ And Na+ Selectivities, Takefumi Morizumi, Kyumhyuk Kim, Hai Li, Elena G Govorunova, Oleg A Sineshchekov, Yumei Wang, Lei Zheng, Éva Bertalan, Ana-Nicoleta Bondar, Azam Askari, Leonid S Brown, John L Spudich, Oliver P Ernst

Journal Articles

Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is a light-gated channel used for optogenetic silencing of mammalian neurons. It selects K+ over Na+ in the absence of the canonical tetrameric K+ selectivity filter found universally in voltage- and ligand-gated channels. The genome of H. catenoides also encodes a highly homologous cation channelrhodopsin (HcCCR), a Na+ channel with >100-fold larger Na+ to K+ permeability ratio. Here, we use cryo-electron microscopy to determine atomic structures of these two channels embedded in peptidiscs to elucidate structural foundations of their dramatically different cation selectivity. Together with structure-guided mutagenesis, we show that K+ versus Na+ …


A Novel Bioactive Peptide, T14, Selectively Activates Mtorc1 Signalling: Therapeutic Implications For Neurodegeneration And Other Rapamycin-Sensitive Applications, Sanskar Ranglani, Anna Ashton, Kashif Mahfooz, Joanna Komorowska, Alexandru Graur, Nadine Kabbani, Sara Garcia-Rates, Susan Greenfield Jun 2023

A Novel Bioactive Peptide, T14, Selectively Activates Mtorc1 Signalling: Therapeutic Implications For Neurodegeneration And Other Rapamycin-Sensitive Applications, Sanskar Ranglani, Anna Ashton, Kashif Mahfooz, Joanna Komorowska, Alexandru Graur, Nadine Kabbani, Sara Garcia-Rates, Susan Greenfield

Journal Articles

T14 modulates calcium influx via the α-7 nicotinic acetylcholine receptor to regulate cell growth. Inappropriate triggering of this process has been implicated in Alzheimer's disease (AD) and cancer, whereas T14 blockade has proven therapeutic potential in in vitro, ex vivo and in vivo models of these pathologies. Mammalian target of rapamycin complex 1 (mTORC1) is critical for growth, however its hyperactivation is implicated in AD and cancer. T14 is a product of the longer 30mer-T30. Recent work shows that T30 drives neurite growth in the human SH-SY5Y cell line via the mTOR pathway. Here, we demonstrate that T30 induces an …


Lipid Nanoparticle-Mediated Mrna Delivery In Lung Fibrosis, Matteo Massaro, Suhong Wu, Gherardo Baudo, Haoran Liu, Scott Collum, Hyunho Lee, Cinzia Stigliano, Victor Segura-Ibarra, Harry Karmouty-Quintana, Elvin Blanco Apr 2023

Lipid Nanoparticle-Mediated Mrna Delivery In Lung Fibrosis, Matteo Massaro, Suhong Wu, Gherardo Baudo, Haoran Liu, Scott Collum, Hyunho Lee, Cinzia Stigliano, Victor Segura-Ibarra, Harry Karmouty-Quintana, Elvin Blanco

Journal Articles

mRNA delivery enables the specific synthesis of proteins with therapeutic potential, representing a powerful strategy in diseases lacking efficacious pharmacotherapies. Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by excessive extracellular matrix (ECM) deposition and subsequent alveolar remodeling. Alveolar epithelial type 2 cells (AEC2) and fibroblasts represent important targets in IPF given their role in initiating and driving aberrant wound healing responses that lead to excessive ECM deposition. Our objective was to examine a lipid nanoparticle (LNP)-based mRNA construct as a viable strategy to target alveolar epithelial cells and fibroblasts in IPF. mRNA-containing LNPs measuring ∼34 nm had …


Acute Acat1/Soat1 Blockade Increases Mam Cholesterol And Strengthens Er-Mitochondria Connectivity., Taylor C Harned, Radu V Stan, Ze Cao, Rajarshi Chakrabarti, Henry N Higgs, Catherine C Y Chang, Ta Yuan Chang Mar 2023

Acute Acat1/Soat1 Blockade Increases Mam Cholesterol And Strengthens Er-Mitochondria Connectivity., Taylor C Harned, Radu V Stan, Ze Cao, Rajarshi Chakrabarti, Henry N Higgs, Catherine C Y Chang, Ta Yuan Chang

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain …


Semi-Quantitative Detection Of Pseudouridine Modifications And Type I/Ii I/Ii Hypermodifications In Human Mrnas Using Direct Long-Read Sequencing, Sepideh Tavakoli, Mohammad Nabizadeh, Amr Makhamreh, Howard Gamper, Caroline A Mccormick, Neda K Rezapour, Ya-Ming Hou, Meni Wanunu, Sara H Rouhanifard Jan 2023

Semi-Quantitative Detection Of Pseudouridine Modifications And Type I/Ii I/Ii Hypermodifications In Human Mrnas Using Direct Long-Read Sequencing, Sepideh Tavakoli, Mohammad Nabizadeh, Amr Makhamreh, Howard Gamper, Caroline A Mccormick, Neda K Rezapour, Ya-Ming Hou, Meni Wanunu, Sara H Rouhanifard

Department of Biochemistry and Molecular Biology Faculty Papers

Here, we develop and apply a semi-quantitative method for the high-confidence identification of pseudouridylated sites on mammalian mRNAs via direct long-read nanopore sequencing. A comparative analysis of a modification-free transcriptome reveals that the depth of coverage and specific k-mer sequences are critical parameters for accurate basecalling. By adjusting these parameters for high-confidence U-to-C basecalling errors, we identify many known sites of pseudouridylation and uncover previously unreported uridine-modified sites, many of which fall in k-mers that are known targets of pseudouridine synthases. Identified sites are validated using 1000-mer synthetic RNA controls bearing a single pseudouridine in the center position, demonstrating systematic …


Roles Unveiled For Membrane-Associated Mucins At The Ocular Surface Using A Muc4 Knockout Mouse Model, Rafael Martinez-Carrasco, Satyanarayan Rachagani, Surinder K. Batra, Pablo Argüeso, M Elizabeth Fini Jan 2023

Roles Unveiled For Membrane-Associated Mucins At The Ocular Surface Using A Muc4 Knockout Mouse Model, Rafael Martinez-Carrasco, Satyanarayan Rachagani, Surinder K. Batra, Pablo Argüeso, M Elizabeth Fini

Journal Articles: Biochemistry & Molecular Biology

Membrane-associated mucins (MAMs) are proposed to play critical roles at the ocular surface; however, in vivo evidence has been lacking. Here we investigate these roles by phenotyping of a Muc4 KO mouse. Histochemical analysis for expression of the beta-galactosidase transgene replacing Muc4 revealed a spiraling ribbon pattern across the corneal epithelium, consistent with centripetal cell migration from the limbus. Depletion of Muc4 compromised transcellular barrier function, as evidenced by an increase in rose bengal staining. In addition, the corneal surface was less smooth, consistent with disruption of tear film stability. While surface cells presented with well-developed microprojections, an increase in …


Microrna-1 Attenuates The Growth And Metastasis Of Small Cell Lung Cancer Through Cxcr4/Foxm1/Rrm2 Axis, Parvez Khan, Jawed A. Siddiqui, Prakash Kshirsagar Dr., Ramakanth Chirravuri Venkata, Shailendra K. Maurya, Tamara Mirzapoiazova, Naveenkumar Perumal, Sanjib Chaudhary, Ranjana K. Kanchan, Mahek Fatima, Md Arafat Khan, Asad Ur Rehman, Imayavaramban Lakshmanan, Sidharth Mahapatra, Geoffrey A. Talmon, Prakash Kulkarni, Apar Kishor Ganti, Maneesh Jain, Ravi Salgia, Surinder K. Batra, Mohd W. Nasser Jan 2023

Microrna-1 Attenuates The Growth And Metastasis Of Small Cell Lung Cancer Through Cxcr4/Foxm1/Rrm2 Axis, Parvez Khan, Jawed A. Siddiqui, Prakash Kshirsagar Dr., Ramakanth Chirravuri Venkata, Shailendra K. Maurya, Tamara Mirzapoiazova, Naveenkumar Perumal, Sanjib Chaudhary, Ranjana K. Kanchan, Mahek Fatima, Md Arafat Khan, Asad Ur Rehman, Imayavaramban Lakshmanan, Sidharth Mahapatra, Geoffrey A. Talmon, Prakash Kulkarni, Apar Kishor Ganti, Maneesh Jain, Ravi Salgia, Surinder K. Batra, Mohd W. Nasser

Journal Articles: Biochemistry & Molecular Biology

BACKGROUND: Small cell lung cancer (SCLC) is an aggressive lung cancer subtype that is associated with high recurrence and poor prognosis. Due to lack of potential drug targets, SCLC patients have few therapeutic options. MicroRNAs (miRNAs) provide an interesting repertoire of therapeutic molecules; however, the identification of miRNAs regulating SCLC growth and metastasis and their precise regulatory mechanisms are not well understood.

METHODS: To identify novel miRNAs regulating SCLC, we performed miRNA-sequencing from donor/patient serum samples and analyzed the bulk RNA-sequencing data from the tumors of SCLC patients. Further, we developed a nanotechnology-based, highly sensitive method to detect microRNA-1 (miR-1, …


Interplay Between Liver Type 1 Innate Lymphoid Cells And Nk Cells Drives The Development Of Alcoholic Steatohepatitis, Chen Cheng, Qian Zhang, Yue Li, Jiali Jiang, Linxi Xie, Haiyuan Shen, Dongqing Wu, Hejiao Zhang, Huiru Zhang, Xuan Wang, Hongyu Wu, Jingjing Xu, Li Gui, Bao Li, Cynthia Ju, Hui Peng, Shi Yin, Long Xu Jan 2023

Interplay Between Liver Type 1 Innate Lymphoid Cells And Nk Cells Drives The Development Of Alcoholic Steatohepatitis, Chen Cheng, Qian Zhang, Yue Li, Jiali Jiang, Linxi Xie, Haiyuan Shen, Dongqing Wu, Hejiao Zhang, Huiru Zhang, Xuan Wang, Hongyu Wu, Jingjing Xu, Li Gui, Bao Li, Cynthia Ju, Hui Peng, Shi Yin, Long Xu

Journal Articles

BACKGROUND & AIMS: Liver contains high frequency of group 1 innate lymphoid cells (ILC), which are composed of comparable number of type 1 ILC (ILC1) and natural killer (NK) cells in steady state. Little is known about whether and how the interaction between ILC1 and NK cells affects the development of alcoholic liver disease.

METHODS: A mouse model of chronic alcohol abuse plus single-binge (Gao-Binge model) was established. The levels of alanine aminotransferase/aspartate aminotransferase, hepatic lipid, and inflammatory cytokines or neutrophils were measured to evaluate the degree of liver injury, steatosis, and inflammation. Flow cytometric analysis, cell depletion, or adoptive …


Hif1a-Dependent Induction Of Alveolar Epithelial Pfkfb3 Dampens Acute Lung Injury, Christine U Vohwinkel, Nana Burns, Ethan Coit, Xiaoyi Yuan, Eszter K Vladar, Christina Sul, Eric P Schmidt, Peter Carmeliet, Kurt Stenmark, Eva S Nozik, Rubin M Tuder, Holger K Eltzschig Dec 2022

Hif1a-Dependent Induction Of Alveolar Epithelial Pfkfb3 Dampens Acute Lung Injury, Christine U Vohwinkel, Nana Burns, Ethan Coit, Xiaoyi Yuan, Eszter K Vladar, Christina Sul, Eric P Schmidt, Peter Carmeliet, Kurt Stenmark, Eva S Nozik, Rubin M Tuder, Holger K Eltzschig

Journal Articles

Acute lung injury (ALI) is a severe form of lung inflammation causing acute respiratory distress syndrome in patients. ALI pathogenesis is closely linked to uncontrolled alveolar inflammation. We hypothesize that specific enzymes of the glycolytic pathway could function as key regulators of alveolar inflammation. Therefore, we screened isolated alveolar epithelia from mice exposed to ALI induced by injurious ventilation to assess their metabolic responses. These studies pointed us toward a selective role for isoform 3 of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Pharmacologic inhibition or genetic deletion of Pfkfb3 in alveolar epithelia (Pfkfb3loxP/loxP SPC-ER-Cre+ mice) was associated with profound increases in ALI during …


Ccl4 Regulates Eosinophil Activation In Eosinophilic Airway Inflammation, Hanh Hong Chu, Yoshiki Kobayashi, Dan Van Bui, Yasutaka Yun, Linh Manh Nguyen, Akitoshi Mitani, Kensuke Suzuki, Mikiya Asako, Akira Kanda, Hiroshi Iwai Dec 2022

Ccl4 Regulates Eosinophil Activation In Eosinophilic Airway Inflammation, Hanh Hong Chu, Yoshiki Kobayashi, Dan Van Bui, Yasutaka Yun, Linh Manh Nguyen, Akitoshi Mitani, Kensuke Suzuki, Mikiya Asako, Akira Kanda, Hiroshi Iwai

Journal Articles

Eosinophilic chronic rhinosinusitis (ECRS) is a refractory airway disease accompanied by eosinophilic inflammation, the mechanisms of which are unknown. We recently found that CCL4/MIP-1β-a specific ligand for CCR5 receptors-was implicated in eosinophil recruitment into the inflammatory site and was substantially released from activated eosinophils. Moreover, it was found in nasal polyps from patients with ECRS, primarily in epithelial cells. In the present study, the role of epithelial cell-derived CCL4 in eosinophil activation was investigated. First, CCL4 expression in nasal polyps from patients with ECRS as well as its role of CCL4 in eosinophilic airway inflammation were investigated in an in …


Terminase Subunits From The Pseudomonas-Phage E217, Ravi K Lokareddy, Chun-Feng David Hou, Steven G Doll, Fenglin Li, Richard E Gillilan, Francesca Forti, David S Horner, Federica Briani, Gino Cingolani Oct 2022

Terminase Subunits From The Pseudomonas-Phage E217, Ravi K Lokareddy, Chun-Feng David Hou, Steven G Doll, Fenglin Li, Richard E Gillilan, Francesca Forti, David S Horner, Federica Briani, Gino Cingolani

Department of Biochemistry and Molecular Biology Faculty Papers

Pseudomonas phages are increasingly important biomedicines for phage therapy, but little is known about how these viruses package DNA. This paper explores the terminase subunits from the Myoviridae E217, a Pseudomonas-phage used in an experimental cocktail to eradicate P. aeruginosa in vitro and in animal models. We identified the large (TerL) and small (TerS) terminase subunits in two genes ∼58 kbs away from each other in the E217 genome. TerL presents a classical two-domain architecture, consisting of an N-terminal ATPase and C-terminal nuclease domain arranged into a bean-shaped tertiary structure. A 2.05 Å crystal structure of the C-terminal domain revealed …


Characterization Of A Bioactive Peptide T14 In The Human And Rodent Substantia Nigra: Implications For Neurodegenerative Disease., Susan Adele Greenfield, Giovanni Ferrati, Clive W Coen, Auguste Vadisiute, Zoltan Molnár, Sara Garcia-Rates, Sally Frautschy, Gregory M Cole Oct 2022

Characterization Of A Bioactive Peptide T14 In The Human And Rodent Substantia Nigra: Implications For Neurodegenerative Disease., Susan Adele Greenfield, Giovanni Ferrati, Clive W Coen, Auguste Vadisiute, Zoltan Molnár, Sara Garcia-Rates, Sally Frautschy, Gregory M Cole

Journal Articles

The substantia nigra is generally considered to show significant cell loss not only in Parkinson's but also in Alzheimer's disease, conditions that share several neuropathological traits. An interesting feature of this nucleus is that the pars compacta dopaminergic neurons contain acetylcholinesterase (AChE). Independent of its enzymatic role, this protein is released from pars reticulata dendrites, with effects that have been observed in vitro, ex vivo and in vivo. The part of the molecule responsible for these actions has been identified as a 14-mer peptide, T14, cleaved from the AChE C-terminus and acting at an allosteric site on alpha-7 nicotinic receptors, …


Attenuation Of Relapsing Fever Neuroborreliosis In Mice By Il-17a Blockade, Meihui Cheng, Jingwen Xu, Kaiyun Ding, Jing Zhang, Wei Lu, Jiansheng Liu, Jiahong Gao, Kishore R Alugupalli, Hongqi Liu Oct 2022

Attenuation Of Relapsing Fever Neuroborreliosis In Mice By Il-17a Blockade, Meihui Cheng, Jingwen Xu, Kaiyun Ding, Jing Zhang, Wei Lu, Jiansheng Liu, Jiahong Gao, Kishore R Alugupalli, Hongqi Liu

Department of Microbiology and Immunology Faculty Papers

Relapsing fever due to Borrelia hermsiiis characterized by recurrent bacteremia episodes. However, infection of B. hermsii, if not treated early, can spread to various organs including the central nervous system (CNS). CNS disease manifestations are commonly referred to as relapsing fever neuroborreliosis (RFNB). In the mouse model of B. hermsiiinfection, we have previously shown that the development of RFNB requires innate immune cells as well as T cells. Here, we found that prior to the onset of RFNB, an increase in the systemic proinflammatory cytokine response followed by sustained levels of IP-10 concurrent with the CNS disease phase. RNA sequencing …


Young Transposable Elements Rewired Gene Regulatory Networks In Human And Chimpanzee Hippocampal Intermediate Progenitors, Sruti Patoori, Samantha M Barnada, Christopher Large, John I Murray, Marco Trizzino Oct 2022

Young Transposable Elements Rewired Gene Regulatory Networks In Human And Chimpanzee Hippocampal Intermediate Progenitors, Sruti Patoori, Samantha M Barnada, Christopher Large, John I Murray, Marco Trizzino

Department of Biochemistry and Molecular Biology Faculty Papers

The hippocampus is associated with essential brain functions, such as learning and memory. Human hippocampal volume is significantly greater than expected compared with that of non-human apes, suggesting a recent expansion. Intermediate progenitors, which are able to undergo multiple rounds of proliferative division before a final neurogenic division, may have played a role in evolutionary hippocampal expansion. To investigate the evolution of gene regulatory networks underpinning hippocampal neurogenesis in apes, we leveraged the differentiation of human and chimpanzee induced pluripotent stem cells into TBR2 (or EOMES)-positive hippocampal intermediate progenitor cells (hpIPCs). We found that the gene networks active in hpIPCs …


D121 Located Within The Dry Motif Of P2y12 Is Essential For P2y12-Mediated Platelet Function., Carol Dangelmaier, Benjamin Mauri, Akruti Patel, Satya P Kunapuli, John C Kostyak Sep 2022

D121 Located Within The Dry Motif Of P2y12 Is Essential For P2y12-Mediated Platelet Function., Carol Dangelmaier, Benjamin Mauri, Akruti Patel, Satya P Kunapuli, John C Kostyak

Department of Medicine Faculty Papers

Platelets are anucleate cells that mediate hemostasis. This occurs via a primary signal that is reinforced by secreted products such as ADP that bind purinergic receptors (P2Y1 and P2Y12) on the platelet surface. We recently identified a human subject, whom we termed platelet defect subject 25 (PDS25) with a platelet functional disorder associated with the P2Y12 receptor. PDS25 has normal blood cell counts and no history of bleeding diathesis. However, platelets from PDS25 have virtually no response to 2-MeSADP (a stable analogue of ADP). Genetic analysis of P2Y12 from PDS25 revealed a heterozygous mutation of D121N within the DRY motif. …


The Emerging Role Of Notch3 Receptor Signalling In Human Lung Diseases, Manish Bodas, Bharathiraja Subramaniyan, Harry Karmouty-Quintana, Peter F Vitiello, Matthew S Walters Sep 2022

The Emerging Role Of Notch3 Receptor Signalling In Human Lung Diseases, Manish Bodas, Bharathiraja Subramaniyan, Harry Karmouty-Quintana, Peter F Vitiello, Matthew S Walters

Journal Articles

The mammalian respiratory system or lung is a tree-like branching structure, and the main site of gas exchange with the external environment. Structurally, the lung is broadly classified into the proximal (or conducting) airways and the distal alveolar region, where the gas exchange occurs. In parallel with the respiratory tree, the pulmonary vasculature starts with large pulmonary arteries that subdivide rapidly ending in capillaries adjacent to alveolar structures to enable gas exchange. The NOTCH signalling pathway plays an important role in lung development, differentiation and regeneration post-injury. Signalling via the NOTCH pathway is mediated through activation of four NOTCH receptors …


Neuromuscular Junction Pathology Is Correlated With Differential Motor Unit Vulnerability In Spinal And Bulbar Muscular Atrophy, Elana Molotsky, Y Liu, Andrew P Lieberman, Diane E Merry Jul 2022

Neuromuscular Junction Pathology Is Correlated With Differential Motor Unit Vulnerability In Spinal And Bulbar Muscular Atrophy, Elana Molotsky, Y Liu, Andrew P Lieberman, Diane E Merry

Department of Biochemistry and Molecular Biology Faculty Papers

Spinal and bulbar muscular atrophy (SBMA) is an X-linked, neuromuscular neurodegenerative disease for which there is no cure. The disease is characterized by a selective decrease in fast-muscle power (e.g., tongue pressure, grip strength) accompanied by a selective loss of fast-twitch muscle fibers. However, the relationship between neuromuscular junction (NMJ) pathology and fast-twitch motor unit vulnerability has yet to be explored. In this study, we used a cross-model comparison of two mouse models of SBMA to evaluate neuromuscular junction pathology, glycolytic-to-oxidative fiber-type switching, and cytoskeletal alterations in pre- and postsynaptic termini of tibialis anterior (TA), gastrocnemius, and soleus hindlimb muscles. …


Effects Of Combined Gentamicin And Furosemide Treatment On Cochlear Macrophages, Liana Sargsyan, Austin R Swisher, Alisa P Hetrick, Hongzhe Li Jul 2022

Effects Of Combined Gentamicin And Furosemide Treatment On Cochlear Macrophages, Liana Sargsyan, Austin R Swisher, Alisa P Hetrick, Hongzhe Li

Journal Articles

Combining aminoglycosides and loop diuretics often serves as an effective ototoxic approach to deafen experimental animals. The treatment results in rapid hair cell loss with extended macrophage presence in the cochlea, creating a sterile inflammatory environment. Although the early recruitment of macrophages is typically neuroprotective, the delay in the resolution of macrophage activity can be a complication if the damaged cochlea is used as a model to study subsequent therapeutic strategies. Here, we applied a high dose combination of systemic gentamicin and furosemide in


Heterozygous Frameshift Variants In Hnrnpa2b1 Cause Early-Onset Oculopharyngeal Muscular Dystrophy, Hong Joo Kim, Payam Mohassel, Sandra Donkervoort, Lin Guo, Kevin O'Donovan, Maura Coughlin, Xaviere Lornage, Nicola Foulds, Simon R Hammans, A Reghan Foley, Charlotte M Fare, Alice F Ford, Masashi Ogasawara, Aki Sato, Aritoshi Iida, Pinki Munot, Gautam Ambegaonkar, Rahul Phadke, Dominic G O'Donovan, Rebecca Buchert, Mona Grimmel, Ana Töpf, Irina T Zaharieva, Lauren Brady, Ying Hu, Thomas E Lloyd, Andrea Klein, Maja Steinlin, Alice Kuster, Sandra Mercier, Pascale Marcorelles, Yann Péréon, Emmanuelle Fleurence, Adnan Manzur, Sarah Ennis, Rosanna Upstill-Goddard, Luca Bello, Cinzia Bertolin, Elena Pegoraro, Leonardo Salviati, Courtney E French, Andriy Shatillo, F Lucy Raymond, Tobias B Haack, Susana Quijano-Roy, Johann Böhm, Isabelle Nelson, Tanya Stojkovic, Teresinha Evangelista, Volker Straub, Norma B Romero, Jocelyn Laporte, Francesco Muntoni, Ichizo Nishino, Mark A Tarnopolsky, James Shorter, Carsten G Bönnemann, J Paul Taylor Apr 2022

Heterozygous Frameshift Variants In Hnrnpa2b1 Cause Early-Onset Oculopharyngeal Muscular Dystrophy, Hong Joo Kim, Payam Mohassel, Sandra Donkervoort, Lin Guo, Kevin O'Donovan, Maura Coughlin, Xaviere Lornage, Nicola Foulds, Simon R Hammans, A Reghan Foley, Charlotte M Fare, Alice F Ford, Masashi Ogasawara, Aki Sato, Aritoshi Iida, Pinki Munot, Gautam Ambegaonkar, Rahul Phadke, Dominic G O'Donovan, Rebecca Buchert, Mona Grimmel, Ana Töpf, Irina T Zaharieva, Lauren Brady, Ying Hu, Thomas E Lloyd, Andrea Klein, Maja Steinlin, Alice Kuster, Sandra Mercier, Pascale Marcorelles, Yann Péréon, Emmanuelle Fleurence, Adnan Manzur, Sarah Ennis, Rosanna Upstill-Goddard, Luca Bello, Cinzia Bertolin, Elena Pegoraro, Leonardo Salviati, Courtney E French, Andriy Shatillo, F Lucy Raymond, Tobias B Haack, Susana Quijano-Roy, Johann Böhm, Isabelle Nelson, Tanya Stojkovic, Teresinha Evangelista, Volker Straub, Norma B Romero, Jocelyn Laporte, Francesco Muntoni, Ichizo Nishino, Mark A Tarnopolsky, James Shorter, Carsten G Bönnemann, J Paul Taylor

Department of Biochemistry and Molecular Biology Faculty Papers

Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift …


A Periplasmic Cinched Protein Is Required For Siderophore Secretion And Virulence Of Mycobacterium Tuberculosis., Lei Zhang, James E Kent, Meredith Whitaker, David C Young, Dominik Herrmann, Alexander E Aleshin, Ying-Hui Ko, Gino Cingolani, Jamil S Saad, D Branch Moody, Francesca M Marassi, Sabine Ehrt, Michael Niederweis Apr 2022

A Periplasmic Cinched Protein Is Required For Siderophore Secretion And Virulence Of Mycobacterium Tuberculosis., Lei Zhang, James E Kent, Meredith Whitaker, David C Young, Dominik Herrmann, Alexander E Aleshin, Ying-Hui Ko, Gino Cingolani, Jamil S Saad, D Branch Moody, Francesca M Marassi, Sabine Ehrt, Michael Niederweis

Department of Biochemistry and Molecular Biology Faculty Papers

Iron is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis. To acquire iron from the host, M. tuberculosis uses the siderophores called mycobactins and carboxymycobactins. Here, we show that the rv0455c gene is essential for M. tuberculosis to grow in low-iron medium and that secretion of both mycobactins and carboxymycobactins is drastically reduced in the rv0455c deletion mutant. Both water-soluble and membrane-anchored Rv0455c are functional in siderophore secretion, supporting an intracellular role. Lack of Rv0455c results in siderophore toxicity, a phenotype observed for other siderophore secretion mutants, and severely impairs replication of M. tuberculosis in mice, demonstrating …


Mechanisms Of Mitochondrial Promoter Recognition In Humans And Other Mammalian Species, Angelica Zamudio-Ochoa, Yaroslav I Morozov, Azadeh Sarfallah, Michael Anikin, Dmitry Temiakov Mar 2022

Mechanisms Of Mitochondrial Promoter Recognition In Humans And Other Mammalian Species, Angelica Zamudio-Ochoa, Yaroslav I Morozov, Azadeh Sarfallah, Michael Anikin, Dmitry Temiakov

Department of Biochemistry and Molecular Biology Faculty Papers

Recognition of mammalian mitochondrial promoters requires the concerted action of mitochondrial RNA polymerase (mtRNAP) and transcription initiation factors TFAM and TFB2M. In this work, we found that transcript slippage results in heterogeneity of the human mitochondrial transcripts in vivo and in vitro. This allowed us to correctly interpret the RNAseq data, identify the bona fide transcription start sites (TSS), and assign mitochondrial promoters for > 50% of mammalian species and some other vertebrates. The divergent structure of the mammalian promoters reveals previously unappreciated aspects of mtDNA evolution. The correct assignment of TSS also enabled us to establish the precise register of …


Analysis Of The Dna-Binding Properties Of Alx1, An Evolutionarily Conserved Regulator Of Skeletogenesis In Echinoderms, Jennifer Guerrero-Santoro, Jian Ming Khor, Ayşe Haruka Açıkbaş, James B. Jaynes, Charles A Ettensohn Jul 2021

Analysis Of The Dna-Binding Properties Of Alx1, An Evolutionarily Conserved Regulator Of Skeletogenesis In Echinoderms, Jennifer Guerrero-Santoro, Jian Ming Khor, Ayşe Haruka Açıkbaş, James B. Jaynes, Charles A Ettensohn

Department of Biochemistry and Molecular Biology Faculty Papers

Alx1, a homeodomain-containing transcription factor, is a highly conserved regulator of skeletogenesis in echinoderms. In sea urchins, Alx1 plays a central role in the differentiation of embryonic primary mesenchyme cells (PMCs) and positively regulates the transcription of most biomineralization genes expressed by these cells. The alx1 gene arose via duplication and acquired a skeletogenic function distinct from its paralog (alx4) through the exonization of a 41-amino acid motif (the D2 domain). Alx1 and Alx4 contain glutamine-50 paired-type homeodomains, which interact preferentially with palindromic binding sites in vitro. Chromatin immunoprecipitation sequencing (ChIP-seq) studies have shown, however, that Alx1 binds both to …


Candida Cell-Surface-Specific Monoclonal Antibodies Protect Mice Against Candida Auris Invasive Infection, Jonothan Rosario-Colon, Karen Eberle, Abby Adams, Evan Courville, Hong Xin Jun 2021

Candida Cell-Surface-Specific Monoclonal Antibodies Protect Mice Against Candida Auris Invasive Infection, Jonothan Rosario-Colon, Karen Eberle, Abby Adams, Evan Courville, Hong Xin

School of Graduate Studies Faculty Publications

Candida auris is a multidrug-resistant fungal pathogen that can cause disseminated bloodstream infections with up to 60% mortality in susceptible populations. Of the three major classes of antifungal drugs, most C. auris isolates show high resistance to azoles and polyenes, with some clinical isolates showing resistance to all three drug classes. We reported in this study a novel approach to treating C. auris disseminated infections through passive transfer of monoclonal antibodies (mAbs) targeting cell surface antigens with high homology in medically important Candida species. Using an established A/J mouse model of disseminated infection that mimics human candidiasis, we showed that …


Gasdermin Pores Permeabilize Mitochondria To Augment Caspase-3 Activation During Apoptosis And Inflammasome Activation., Corey Rogers, Dan A. Erkes, Alexandria Nardone, Andrew E. Aplin, Teresa Fernandes-Alnemri, Emad S. Alnemri Apr 2019

Gasdermin Pores Permeabilize Mitochondria To Augment Caspase-3 Activation During Apoptosis And Inflammasome Activation., Corey Rogers, Dan A. Erkes, Alexandria Nardone, Andrew E. Aplin, Teresa Fernandes-Alnemri, Emad S. Alnemri

Department of Biochemistry and Molecular Biology Faculty Papers

Gasdermin E (GSDME/DFNA5) cleavage by caspase-3 liberates the GSDME-N domain, which mediates pyroptosis by forming pores in the plasma membrane. Here we show that GSDME-N also permeabilizes the mitochondrial membrane, releasing cytochrome c and activating the apoptosome. Cytochrome c release and caspase-3 activation in response to intrinsic and extrinsic apoptotic stimuli are significantly reduced in GSDME-deficient cells comparing with wild type cells. GSDME deficiency also accelerates cell growth in culture and in a mouse model of melanoma. Phosphomimetic mutation of the highly conserved phosphorylatable Thr6 residue of GSDME, inhibits its pore-forming activity, thus uncovering a potential mechanism by which GSDME …