Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Apoe And Alzheimer’S Disease: Neuroimaging Of Metabolic And Cerebrovascular Dysfunction, Jason A. Brandon, Brandon C. Farmer, Holden C. Williams, Lance A. Johnson Jun 2018

Apoe And Alzheimer’S Disease: Neuroimaging Of Metabolic And Cerebrovascular Dysfunction, Jason A. Brandon, Brandon C. Farmer, Holden C. Williams, Lance A. Johnson

Physiology Faculty Publications

Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for late onset Alzheimer’s Disease (AD), and is associated with impairments in cerebral metabolism and cerebrovascular function. A substantial body of literature now points to E4 as a driver of multiple impairments seen in AD, including blunted brain insulin signaling, mismanagement of brain cholesterol and fatty acids, reductions in blood brain barrier (BBB) integrity, and decreased cerebral glucose uptake. Various neuroimaging techniques, in particular positron emission topography (PET) and magnetic resonance imaging (MRI), have been instrumental in characterizing these metabolic and vascular deficits associated with this important AD risk factor. In …


Molecular Regulation Of Vascular Calcification In Murine Models Of Atherosclerosis, Shanshan Gao Dec 2015

Molecular Regulation Of Vascular Calcification In Murine Models Of Atherosclerosis, Shanshan Gao

Dissertations & Theses (Open Access)

Background: Calcification occurs often in the atherosclerotic lesions of patients with coronary heart disease and animals with hypercholesterolemia, such as apolipoprotein-E deficient (ApoE-/-) mice. However, the mechanism(s) underlying the development of calcification in atherosclerosis remains unclear. ApoE acts as a lipid transporter, but also has been recognized as a potential regulator of osteogenesis. Little information is available as to whether ApoE has any direct impact on osteogenesis and calcification in vascular smooth muscle cells (VSMC). Several signal transduction pathways play a role in regulation of calcification, including the Wnt/β-catenin system and potentially GTAP, an ubiquitin-conjugating enzyme responsible for protein …