Open Access. Powered by Scholars. Published by Universities.®

Horticulture Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Horticulture

Method Developments To Identify Loci And Selection Patterns Associated With Genotype By Environment Interactions In Soybean, Mary M. Happ Jul 2023

Method Developments To Identify Loci And Selection Patterns Associated With Genotype By Environment Interactions In Soybean, Mary M. Happ

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

For many complex traits such as grain yield, genotype by environment (GxE) interactions are a prevalent source of phenotypic variation. Exploring the capacity of different methodologies to help describe and quantify the GxE interaction landscape for grain yield is an important step in informing plant breeders what the most viable strategies for management and exploitation of GxE may be. In this endeavor, we compared the results from multiple genome wide association studies (GWAS) that used either stability estimators as a phenotype to capture GxE variance, or directly mapped GxE in a mixed model for yield. Leading into this study, a …


Arkansas Soybean Performance Tests 2022, J. F. Carlin, R. B. Mulloy, R. D. Bond Jun 2023

Arkansas Soybean Performance Tests 2022, J. F. Carlin, R. B. Mulloy, R. D. Bond

Arkansas Agricultural Experiment Station Research Series

Soybean variety and strain performance tests are conducted each year in Arkansas by the University of Arkansas System Division of Agriculture’s Arkansas Crop Variety Improvement Program. The tests provide information to companies developing varieties and/ or marketing seed within the state, and aid the Arkansas Cooperative Extension Service in formulating variety recommendations for soybean producers.


Genomic Selection For Yield And Seed Composition Stability In An Applied Soybean Breeding Program, Benjamin Harms May 2023

Genomic Selection For Yield And Seed Composition Stability In An Applied Soybean Breeding Program, Benjamin Harms

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

Stability traits are of primary importance in plant breeding to ensure consistency in phenotype across a range of environments. However, selection efficiency and accuracy for stability traits can be hindered due to the requirement of obtaining phenotype data across multiple years and environments for proper stability analysis. Genomic selection is a method that allows prediction of a phenotype prior to observation in the field using genome-wide marker data and phenotype data from a training population. To assess prediction of stability traits, two elite-yielding soybean populations developed three years apart in the same breeding program were used. The individuals in each …


A Leaf-Level Spectral Library To Support High-Throughput Plant Phenotyping: Predictive Accuracy And Model Transfer, Nuwan K. Wijewardane, Huichun Zhang, Jinliang Yang, James C. Schnable, Daniel P. Schachtman, Yufeng Ge Apr 2023

A Leaf-Level Spectral Library To Support High-Throughput Plant Phenotyping: Predictive Accuracy And Model Transfer, Nuwan K. Wijewardane, Huichun Zhang, Jinliang Yang, James C. Schnable, Daniel P. Schachtman, Yufeng Ge

Department of Agronomy and Horticulture: Faculty Publications

Leaf-level hyperspectral reflectance has become an effective tool for high-throughput phenotyping of plant leaf traits due to its rapid, low-cost, multi-sensing, and non-destructive nature. However, collecting samples for model calibration can still be expensive, and models show poor transferability among different datasets. This study had three specific objectives: first, to assemble a large library of leaf hyperspectral data (n=2460) from maize and sorghum; second, to evaluate two machine-learning approaches to estimate nine leaf properties (chlorophyll, thickness, water content, nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur); and third, to investigate the usefulness of this spectral library for predicting external datasets …


Recombination Hotspots In Soybean [Glycine Max (L.) Merr.], Samantha Mcconaughy, Keenan L. Amundsen, Qijian Song, Vince Pantalone, D. Hyten Mar 2023

Recombination Hotspots In Soybean [Glycine Max (L.) Merr.], Samantha Mcconaughy, Keenan L. Amundsen, Qijian Song, Vince Pantalone, D. Hyten

Department of Agronomy and Horticulture: Faculty Publications

Recombination allows for the exchange of genetic material between two parents, which plant breeders exploit to make improved cultivars. This recombination is not distributed evenly across the chromosome. Recombination mostly occurs in euchromatic regions of the genome and even then, recombination is focused into clusters of crossovers termed recombination hotspots. Understanding the distribution of these hotspots along with the sequence motifs associated with them may lead to methods that enable breeders to better exploit recombination in breeding. To map recombination hotspots and identify sequence motifs associated with hotspots in soybean [Glycine max (L.) Merr.], two biparental recombinant inbred lines …