Open Access. Powered by Scholars. Published by Universities.®

Nutrition Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nutrition

Very Low-Carbohydrate, High-Fat, Weight Reduction Diet Decreases Hepatic Gene Response To Glucose In Obese Rats, Kathleen V. Axen, Marianna A. Harper, Yu Fu Kuo, Kenneth Axen Jul 2018

Very Low-Carbohydrate, High-Fat, Weight Reduction Diet Decreases Hepatic Gene Response To Glucose In Obese Rats, Kathleen V. Axen, Marianna A. Harper, Yu Fu Kuo, Kenneth Axen

Publications and Research

Background: Very low carbohydrate (VLC) diets are used to promote weight loss and improve insulin resistance (IR) in obesity. Since the high fat content of VLC diets may predispose to hepatic steatosis and hepatic insulin resistance, we investigated the effect of a VLC weight-reduction diet on measures of hepatic and whole body insulin resistance in obese rats.

Methods: In Phase 1, adult male Sprague-Dawley rats were made obese by ad libitum consumption of a high-fat (HF1, 60% of energy) diet; control rats ate a lower-fat (LF, 15%) diet for 10 weeks. In Phase 2, obese rats were fed energy-restricted amounts …


Choline Supplementation Normalizes Fetal Adiposity And Reduces Lipogenic Gene Expression In A Mouse Model Of Maternal Obesity, Chauntelle Jack-Roberts, Yaelle Joselit, Khatia Nanobashvili, Rachel Bretter, Olga V. Malysheva, Marie A. Caudill, Anjana Saxena, Kathleen Axen, Ahmed Gomaa, Xinyin Jiang Aug 2017

Choline Supplementation Normalizes Fetal Adiposity And Reduces Lipogenic Gene Expression In A Mouse Model Of Maternal Obesity, Chauntelle Jack-Roberts, Yaelle Joselit, Khatia Nanobashvili, Rachel Bretter, Olga V. Malysheva, Marie A. Caudill, Anjana Saxena, Kathleen Axen, Ahmed Gomaa, Xinyin Jiang

Publications and Research

Maternal obesity increases fetal adiposity which may adversely affect metabolic health of the offspring. Choline regulates lipid metabolism and thus may influence adiposity. This study investigates the effect of maternal choline supplementation on fetal adiposity in a mouse model of maternal obesity. C57BL/6J mice were fed either a high-fat (HF) diet or a control (NF) diet and received either 25 mM choline supplemented (CS) or control untreated (CO) drinking water for 6 weeks before timed-mating and throughout gestation. At embryonic day 17.5, HF feeding led to higher (p < 0.05) percent total body fat in fetuses from the HFCO group, while the choline supplemented HFCS group did not show significant difference versus the NFCO group. Similarly, HF feeding led to higher (p < 0.05) hepatic triglyceride accumulation in the HFCO but not the HFCS fetuses. mRNA levels of lipogenic genes such as Acc1, Fads1, and Elovl5, as well as the transcription factor Srebp1c that favors lipogenesis were downregulated (p < 0.05) by maternal choline supplementation in the HFCS group, which may serve as a mechanism to reduce fat accumulation in the fetal liver during maternal HF feeding. In summary, maternal choline supplementation improves indices of fetal adiposity in obese dams at late gestation.