Open Access. Powered by Scholars. Published by Universities.®

Laboratory and Basic Science Research Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Laboratory and Basic Science Research

Effects Of Increased Sulfatide In Schwann And Mesenchymal Stromal Cells In Metachromatic Leukodystrophy, Srinitya Gannavarapu Apr 2020

Effects Of Increased Sulfatide In Schwann And Mesenchymal Stromal Cells In Metachromatic Leukodystrophy, Srinitya Gannavarapu

Electronic Thesis and Dissertation Repository

Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disease caused by deficient arylsulfatase A (ARSA) activity, resulting in intra-lysosomal accumulation of sulfatide. Sulfatide is integral for proper maintenance of myelin in the central and peripheral nervous systems. This study characterized mitochondrial morphology, cytokine secretion and phagocytic activity in Schwann and mesenchymal cells isolated from ARSA-/- mice. Cells were treated with different, increasing concentrations of sulfatide for a period of 24 hours. ARSA-/- cells presented with persistent, increased fragmented mitochondrial structures suggestive of prolonged mitochondrial fission. Sulfatide treatments increased secretion of pro-inflammatory cytokines TNF-α and IL-1β in ARSA-/- …


Molecular Mechanisms Linking Amino Acid (Leucine) Deprivation To Igfbp-1 Hyperphosphorylation In Fetal Growth Restriction, Niyati M. Malkani Jun 2015

Molecular Mechanisms Linking Amino Acid (Leucine) Deprivation To Igfbp-1 Hyperphosphorylation In Fetal Growth Restriction, Niyati M. Malkani

Electronic Thesis and Dissertation Repository

In this study, we explore the molecular mechanisms linking amino acid (leucine) deprivation to IGFBP-1 hyperphosphorylation in vitro. During pregnancy, a maladaptive fetal response to in utero amino acid deprivation leads to Fetal Growth Restriction (FGR). FGR infants display elevated phosphorylated IGFBP-1, which is associated with decreased IGF-I bioavailability. Leucine deprivation inhibits mechanistic target of rapamycin (mTOR) signaling and stimulates the amino acid response (AAR). Using HepG2 cells, a model for fetal hepatocytes, we demonstrate that in leucine deprivation, the AAR modulates total and phosphorylated IGFBP-1 while mTOR mediates total IGFBP-1 secretion only. We also reveal that protein kinases …