Open Access. Powered by Scholars. Published by Universities.®

Laboratory and Basic Science Research Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Laboratory and Basic Science Research

Adipocytes And Innate Immunity In Systemic Sclerosis, Nancy Wareing May 2023

Adipocytes And Innate Immunity In Systemic Sclerosis, Nancy Wareing

Dissertations & Theses (Open Access)

Systemic sclerosis (SSc; scleroderma) is a chronic systemic autoimmune and connective tissue disorder characterized by vasculopathy, autoimmune phenomena, and widespread fibrosis. Skin thickening and tightening is the cardinal feature of SSc and is responsible, in part, for the considerable morbidity of this disease. There are currently no targeted treatments for skin manifestations in SSc, primarily due to our fragmented understanding of its pathophysiologic mechanisms. In PART I, we report a previously unappreciated link between aberrant expression of the developmental gene sine oculis homeobox homolog 1 (SIX1) in skin-associated adipocytes in SSc skin and the early loss of dermal white adipose …


The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia Aug 2022

The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with dismal prognosis. The only curative option for patients is surgery, but over 80% of patients are not surgical candidates. Unfortunately, PDAC is resistant to the three remaining options. PDAC is characterized by a profoundly hypoxic and immunosuppressive stroma, which contributes to its therapeutic recalcitrance. Alpha-smooth muscle actin+ (αSMA+) cancer-associated fibroblasts (CAFs) are the most abundant stromal component, as well as mediators of stromal deposition. The hypoxia-inducible factors (HIF1 and HIF2) coordinate responses to hypoxia, yet, despite their known association to poor patient outcomes, their functions within the PDAC tumor microenvironment (TME) …


Alternative Polyadenylation Modulates Expression Of Pro-Fibrotic Proteins And Contributes To Lung Fibrosis, Junsuk Ko May 2020

Alternative Polyadenylation Modulates Expression Of Pro-Fibrotic Proteins And Contributes To Lung Fibrosis, Junsuk Ko

Dissertations & Theses (Open Access)

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease which affects about 5 to 8 million individuals in the world. Despite the high prevalence, there is currently no cure for IPF, and the cause of this disease is still unclear. Our laboratory and collaborators have shown that nudix hydrolase 21 (NUDT21, which is also known as cleavage factor 25, CFIm25) is a key regulator of alternative polyadenylation (APA). NUDT21 depletion causes 3’UTR shortening via APA leading to enhanced mRNA stability and protein translation. This NUDT21 reduction promotes tumor growth in glioblastoma by enhancing expression of oncogenes. Cancer and IPF share …


Regulation Of Breast Cancer Initiation And Progression By 14-3-3zeta, Chia-Chi Chang Aug 2016

Regulation Of Breast Cancer Initiation And Progression By 14-3-3zeta, Chia-Chi Chang

Dissertations & Theses (Open Access)

14-3-3ζ is a ubiquitously expressed family member of proteins that have been implicated to have oncogenic potential through its interactions and involvement in cancer initiation and progression. 14-3-3ζ belongs to the highly conserved 14-3-3ζ protein family and modulates numerous pathways in cancer. Overexpression of 14-3-3ζ is an early event, occurs in more than 40% of human breast cancer cases, and is associated with disease recurrence and poor prognosis. Metabolic reprogramming is a hallmark of cancer. Cancer cells elevate aerobic glycolysis to produce metabolic intermediates and reducing equivalents, thereby facilitating cellular adaptation to the adverse environment and sustaining fast proliferation. Interestingly, …


Multilevel Deregulation Of Survival Mechanisms In Npm-Alk+ T-Cell Lymphoma, Deeksha Vishwamitra May 2015

Multilevel Deregulation Of Survival Mechanisms In Npm-Alk+ T-Cell Lymphoma, Deeksha Vishwamitra

Dissertations & Theses (Open Access)

The anaplastic lymphoma kinase (ALK) is a single chain transmembrane receptor tyrosine kinase that belongs to the insulin receptor superfamily. Other members of this superfamily include the insulin receptor (IR), type I insulin-like growth factor receptor (IGF-IR), and the leukocyte tyrosine kinase. The common structural finding among these tyrosine kinases is the YXXXYY motif present within their respective tyrosine kinase domains. Binding of its ligands causes ALK receptor homodimerization and protein kinase activation. ALK has been previously shown to play a significant role during early developmental stages. In human embryos, the expression of ALK is mainly seen in …


Chemosensitization Of Hepatocellular Carcinoma To Gemcitabine By Non-Invasive Radiofrequency Field-Induced Hyperthermia, Mustafa Raoof May 2012

Chemosensitization Of Hepatocellular Carcinoma To Gemcitabine By Non-Invasive Radiofrequency Field-Induced Hyperthermia, Mustafa Raoof

Dissertations & Theses (Open Access)

Gemcitabine is a potent nucleoside analogue against solid tumors however drug resistance rapidly emerges. Removal of gemcitabine incorporated in the DNA by repair mechanisms could potentially contribute to resistance in chemo-refractory solid tumors. In this study, we evaluated homologous recombination repair of gemcitabine-stalled replication forks as a potential mechanism contributing to resistance. We also studied the effect of hyperthermia on homologous recombination pathway to explain the previously reported synergy between gemcitabine and hyperthermia. We found that hyperthermia degrades and inhibits localization of Mre11 to gemcitabine-stalled replication forks. Furthermore, gemcitabine-treated cells that were also treated with hyperthermia demonstrate a prolonged passage …


The Role Of The Androgen Receptor Cofactor P44/Wdr77 In Astrocyte Activation, Bryce H. Vincent Aug 2011

The Role Of The Androgen Receptor Cofactor P44/Wdr77 In Astrocyte Activation, Bryce H. Vincent

Dissertations & Theses (Open Access)

Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein (p44/WDR77) and found that it plays a critical role in the control of proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44 gene in the mouse brain caused accelerated aging with dramatic astrogliosis. The p44/WDR77 is expressed in astrocytes and loss of p44/WDR77 expression in astrocytes leads to …


Defining The Role Of Egfr Acetylation In Cellular Processes: Clinical Implications, Hui Song May 2011

Defining The Role Of Egfr Acetylation In Cellular Processes: Clinical Implications, Hui Song

Dissertations & Theses (Open Access)

Epidermal growth factor receptor (EGFR) is a cell membrane tyrosine kinase receptor and plays a pivotal role in regulating cell growth, differentiation, cell cycle, and tumorigenesis. Deregulation of EGFR causes many diseases including cancers. Intensive investigation of EGFR alteration in human cancers has led to profound progress in developing drugs to target EGFR-mediated cancers. While exploring possible synergistic enhancement of therapeutic efficacy by combining EGFR tyrosine kinase inhibitors (TKI) with other anti-cancer agents, we observed that suberoylanilide hydroxamic acid (SAHA, a deacetylase inhibitor) enhanced TKI-induced cancer cell death, which further led us to question whether SAHA-mediated sensitization to TKI was …