Open Access. Powered by Scholars. Published by Universities.®

Laboratory and Basic Science Research Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Laboratory and Basic Science Research

Blood-Tissue Barriers And Autoantibodies In Neurodegenerative Disease Pathogenesis: An Approach To Diagnostics And Disease Mechanism, Eric Luria Goldwaser Aug 2016

Blood-Tissue Barriers And Autoantibodies In Neurodegenerative Disease Pathogenesis: An Approach To Diagnostics And Disease Mechanism, Eric Luria Goldwaser

Graduate School of Biomedical Sciences Theses and Dissertations

Brain homeostasis can be affected in a number of ways that lead to gross anatomical, cellular, and molecular disturbances giving rise to diseases like Alzheimer’s disease (AD) and related dementias. Unfortunately, the mechanistic pathoetiology of AD’s hallmark features of cerebral amyloid plaque buildup and neuronal death are still disputed. Using human brain AD sections, immunohistochemistry experiments revealed internalized surface proteins, co-localized to an expanded lysosomal compartment. Other stains for amyloid-β1-42 (Aβ42) and various immunoglobulin (Ig) species displayed them leaking out of the cerebrovasculature through a dysfunctional blood-brain barrier (BBB), binding to neurons in the vicinity, and localizing to intracellular vesicles …


Hexokinase Ii Localization Is Independent Of Ampk Activation In Hela Cells, Alyssa Brown Jan 2016

Hexokinase Ii Localization Is Independent Of Ampk Activation In Hela Cells, Alyssa Brown

Graduate School of Biomedical Sciences Theses and Dissertations

In order for a cancer cell to thrive, it must alter its metabolism to produce the energy needed for rapid growth. Cells accomplish this by the Warburg Effect, or switching metabolism to aerobic glycolysis, where a cell can rapidly break down sugar into ATP, lactic acid and additional byproducts. Hexokinase 2, the enzyme that catalyzes the first committed step of glycolysis, may also be upregulated in cancer cells to increase glucose breakdown. Similar proteins for metabolism are found in both S. cerevisiae and mammalian cells. S. cerevisiae regulates metabolism through glucose repression, by Snf1 (mammalian homolog: AMPK) activation, which aids …