Open Access. Powered by Scholars. Published by Universities.®

Laboratory and Basic Science Research Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Laboratory and Basic Science Research

Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons May 2022

Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons

Theses and Dissertations

Fatigue testing of stretch sensors often focuses on high amplitude, low-cycle fatigue (LCF) behavior; however, when used for orthopaedic, athletic, or ergonomic assessments, stretch sensors are subjected to low amplitude, high-cycle fatigue (HCF) conditions. As an added layer of complexity, the fatigue testing of stretch sensors is not only focused on the life of the material comprising the sensor, but also on the reliability of the signal produced during the extension and relaxation of the sensor. Research into the development of a smart sock that can be used to measure the range of motion (ROM) of the ankle joint during …


The Rotator Cuff Tendon-To-Bone Interface: Maturation, Aging, And 3d Bioprinting For Regeneration, Xiping Jiang Dec 2021

The Rotator Cuff Tendon-To-Bone Interface: Maturation, Aging, And 3d Bioprinting For Regeneration, Xiping Jiang

Theses & Dissertations

Rotator cuff tendon injuries often occur at the tendon-to-bone interface (i.e., enthesis) area with a high prevalence for the elderly population. In addition, regeneration of the gradient structure of the enthesis is still a significant clinical challenge. Our studies aim to identify the histological, molecular, and biomechanical alterations of the rotator cuff enthesis with maturation and aging, and develop a novel therapeutic method using three-dimensional (3D) bioprinting technique to regenerate a functional enthesis. Striking variations of the entheses were observed both histologically and biomechanically during the maturation process. The histological features did not show many differences at the insertion site …


Effect Of Hydrogen Peroxide On Algae And Microcystin In Control And Lake Waters, Tatiana Castillo Hernandez Dec 2021

Effect Of Hydrogen Peroxide On Algae And Microcystin In Control And Lake Waters, Tatiana Castillo Hernandez

Biological and Agricultural Engineering Undergraduate Honors Theses

Cyanobacteria are photo-autotrophic organisms with a worldwide distribution, which can result in Harmful Algal Blooms (HABs) producing toxins. One of the most common strains of cyanobacteria is Microcystis, which produces the most abundant cyanotoxin, microcystin. In this study, we analyzed the effect of H2O2 on algae and microcystin using both lake and reagent grade water. The first objective was to determine the effect of H2O2 on algae and cyanobacteria in lake water that was nutrient enriched. The second objective was to detect the effect of H2O2 at oxidizing microcystin in …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Primer Payload System For Higher-Order Multiplex Lamp: Design And Development Of Unit Processes, Tochukwu Dubem Anyaduba Mar 2021

Primer Payload System For Higher-Order Multiplex Lamp: Design And Development Of Unit Processes, Tochukwu Dubem Anyaduba

KGI Theses and Dissertations

Design and Development of Platforms for the Application of Loop-mediated Isothermal Nucleic Acid Amplification, LAMP, in the Diagnosis of Polymicrobial Diseases

Tochukwu Dubem Anyaduba, Travis Schlappi (PI)

For the past two decades, several isothermal nucleic acid amplification technologies have emerged. These are mostly in response to the need for robust molecular diagnostic tools amenable to point-of-care and limited-resource settings. Of these, loop-mediated isothermal amplification, LAMP, stands out as a highly specific and rapid alternative to the polymerase chain reaction, PCR. One of LAMP's significant characteristics involves using four essential and two loop (rate increasing) primers to recognize six to eight …


Comparative Genomics Of Human Mesenchymal Stem Cells And Human Mesenchymal Stem Cells Derived Vascular Smooth Muscle Cells, Samia Ismail May 2020

Comparative Genomics Of Human Mesenchymal Stem Cells And Human Mesenchymal Stem Cells Derived Vascular Smooth Muscle Cells, Samia Ismail

Biomedical Engineering Undergraduate Honors Theses

As of 2017, vascular diseases contributed to 23.1% of all deaths in America. To address the need for more effective and sustainable treatment options for these ailments, stem cell differentiation and implantation has emerged as a viable alternative to standard bypass and graft insertions. A completely autologous treatment can be achieved by extracting adult stem cells, differentiating them into vascular smooth muscle cells (VSMCs), and then reimplanting these cells at the affected tissue site. This study aims to investigate the efficiency of the VSMC differentiation from human mesenchymal stem cells (hMSCs) by comparing 4 cell lines of untreated hMSCs with …


The Impact Of Aging And Mechanical Injury On Alveolar Epithelial And Macrophage Responses In Acute Lung Injury And Inflammation, Michael S. Valentine Jan 2020

The Impact Of Aging And Mechanical Injury On Alveolar Epithelial And Macrophage Responses In Acute Lung Injury And Inflammation, Michael S. Valentine

Theses and Dissertations

Patients with severe lung pathologies, such as Acute Respiratory Distress Syndrome (ARDS), often require mechanical ventilation as a clinical intervention; however, this procedure frequently exacerbates the original pulmonary issue and produces an exaggerated inflammatory response that potentially leads to sepsis, multisystem organ failure, and mortality. This acute lung injury (ALI) condition has been termed Ventilator-Induced Lung Injury (VILI). Alveolar overdistension, cyclic atelectasis, and biotrauma are the primary injury mechanisms in VILI that lead to the loss of alveolar barrier integrity and pulmonary inflammation. Stress and strains during mechanical ventilation are believed to initiate alveolar epithelial mechanotransduction signaling mechanisms that contribute …


A Method To Measure The Detective Quantum Efficiency Of Radiographic Systems In Clinical Setting, Michael C. Mcdonald Apr 2012

A Method To Measure The Detective Quantum Efficiency Of Radiographic Systems In Clinical Setting, Michael C. Mcdonald

Electronic Thesis and Dissertation Repository

The risks associated with exposure to radiation make it critical that digital imaging systems give the best possible images for a given dose to the patient. The DQE is the most widely accepted measure of performance and dose efficiency for digital radiography systems, however it is not commonly measured in a clinical environment as part of routine quality assurance. The primary reason for this is that the data provided to the user by clinical systems has typically undergone image processing and therefore may have a non-linear characteristic response. This is a problem because the Fourier metrics of the DQE require …