Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biotechnology

Characterizing Endogenous Dicer Products To Unravel Novel Rnai Biogenesis Pathways, Jacob Oche Peter Jun 2022

Characterizing Endogenous Dicer Products To Unravel Novel Rnai Biogenesis Pathways, Jacob Oche Peter

Dissertations

ABSTRACT

RNA interference (RNAi) is a pervasive gene regulatory mechanism in eukaryotes based on the action of multiple classes of small RNA (sRNA). Exploiting RNAi pathways in non-model systems have great potential for creating potent RNAi technologies. Here, we accessed RNAi-mediated control of gene expression in the two-spotted spider mite, Tetranychus urticae (T. urticae) using engineered dsRNA designed to modulate the host RNAi pathway and increase RNAi efficacy. Analysis of Dicer (Dcr) generated fragments revealed how exogenous RNAs access the host RNAi pathway in this animal, opening avenues for designing RNAi technology for their control. Further, some organisms …


Comparative Genomics Methods And Applications, Emily N. Alden Jul 2021

Comparative Genomics Methods And Applications, Emily N. Alden

Biomedical Sciences ETDs

Virtually all fields of biology have benefited from the advancements in comparative genomics technologies, specifically in the study of evolution. In this dissertation I develop and use comparative genomic technologies to investigate the novel SARS-CoV-2 virus, assembly the first genome of the black lace domestic angelfish and identify germline genetic variants associated with altered breast cancer-specific survival. Our genome tiling array for the novel coronavirus presents a rapid and cost-effective method to sequence the entire viral genome and can be used to track the rapid evolution of viral variants in the population. The domestic angelfish is a member of the …


Evolution Of Bordetella Pertussis Genome May Play A Role In The Increased Rate Of Whooping Cough Cases In The United States, Kevin Loftus May 2018

Evolution Of Bordetella Pertussis Genome May Play A Role In The Increased Rate Of Whooping Cough Cases In The United States, Kevin Loftus

Senior Honors Projects, 2010-2019

Bordetella pertussis is the bacterium responsible for pertussis, a disease commonly referred to as whooping cough. Recently, pertussis has made a resurgence in the U.S. despite high-vaccination coverage. Possible causes of the increased number of pertussis cases include genetic evolution of B. pertussis, increased awareness of the disease, better laboratory diagnostics, and the switch from a whole-cellular (wP) vaccine to an acellular vaccine (aP) in the 1990s. Fortunately, just as B. pertussis is evolving, so is the arsenal of technologies used to understand and combat this pathogenic bacterium. Whole genome sequencing is one technology that helps researchers better understand …


Identifying Chromosome Rearrangements In The Allopolyploid Brassica Napus Using Pyrosequencing, Alexandra R. Barbella Oct 2013

Identifying Chromosome Rearrangements In The Allopolyploid Brassica Napus Using Pyrosequencing, Alexandra R. Barbella

Master's Theses

Allopolyploids form through the hybridization of two or more diploid genomes. A challenge to reproduction in allopolyploids is that pairing can occur between homologous chromosomes or homeologous chromosomes (i.e.different subgenomes.). Crossover between homeologous chromosomes can result in chromosome rearrangements that lower fertility and overall fitness. Rearrangements can alter the dosage of either entire chromosomes or just parts of chromosomes. Understanding the frequency and extent of rearrangements will help to explain the evolution and genome stabilization of agriculturally important allopolyploid species. Pyrosequencing is a useful tool in the study dosage changes in allopolyploids because it allows quantification of the relative contribution …