Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biotechnology

Opinion Letter As To The Patentability Of Certain Inventions Associated With The Identification Of Partial Dna Sequences, Rebecca S. Eisenberg, Robert P. Merges May 2015

Opinion Letter As To The Patentability Of Certain Inventions Associated With The Identification Of Partial Dna Sequences, Rebecca S. Eisenberg, Robert P. Merges

Robert P Merges

No abstract provided.


Reply To Comments On The Patentability Of Certain Inventions Associated With The Identification Of Partial Cdna Sequences, Rebecca S. Eisenberg, Robert P. Merges May 2015

Reply To Comments On The Patentability Of Certain Inventions Associated With The Identification Of Partial Cdna Sequences, Rebecca S. Eisenberg, Robert P. Merges

Robert P Merges

No abstract provided.


Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring May 2015

Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring

Dartmouth Scholarship

The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum.

.


Elimination Of Hydrogenase Active Site Assembly Blocks H2 Production And Increases Ethanol Yield In Clostridium Thermocellum, Ranjita Biswas, Tianyong Zheng, Daniel G. Olson, Lee R. Lynd, Adam M. Guss Feb 2015

Elimination Of Hydrogenase Active Site Assembly Blocks H2 Production And Increases Ethanol Yield In Clostridium Thermocellum, Ranjita Biswas, Tianyong Zheng, Daniel G. Olson, Lee R. Lynd, Adam M. Guss

Dartmouth Scholarship

Background: The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2 , and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl coenzyme A reduction to ethanol. Results: H2 production in C. thermocellum is encoded by four hydrogenases. Rather than delete each individually, we targeted hydrogenase maturase gene hydG, involved in converting the …