Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Plant Sciences

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 41

Full-Text Articles in Biotechnology

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He Jun 2022

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He

Biology Faculty Publications

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B (phyB) and EARLY FLOWERING 3 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates (GDACs) …


Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina Jun 2021

Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina

Biology Faculty Publications

Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview …


Responses Of Soil Surface Greenhouse Gas Emissions To Nitrogen And Sulfur Fertilizer Rates To Brassica Carinata Grown As A Bio-Jet Fuel, Dwarika Bhattarai, Gandura O. Abagandura, Thandiwe Nleya, Sandeep Kumar Apr 2021

Responses Of Soil Surface Greenhouse Gas Emissions To Nitrogen And Sulfur Fertilizer Rates To Brassica Carinata Grown As A Bio-Jet Fuel, Dwarika Bhattarai, Gandura O. Abagandura, Thandiwe Nleya, Sandeep Kumar

Agronomy, Horticulture and Plant Science Faculty Publications

Carinata (Brassica carinata A. Braun), a non-food oilseed crop and an alternative bio-jet fuel feedstock, has received attention for its potential as a low-input option for production in the semi-arid region of the Northern Great Plains of the United States. Research addressing the impacts of nitrogen (N) and sulfur (S) fertilizers on soils and greenhouse gas (GHG; CO2, N2O, and CH4) emissions from carinata production are limited. Thus, objective of this study was to evaluate the impact of different rates of N and S fertilizers applied to carinata on soil properties and GHG …


Plant Defensin Antibacterial Mode Of Action Against Pseudomonas Species, Andrew E. Sathoff, Shawn Lewenza, Deborah A. Samac Jun 2020

Plant Defensin Antibacterial Mode Of Action Against Pseudomonas Species, Andrew E. Sathoff, Shawn Lewenza, Deborah A. Samac

Faculty Research & Publications

Background: Though many plant defensins exhibit antibacterial activity, little is known about their antibacterial mode of action (MOA). Antimicrobial peptides with a characterized MOA induce the expression of multiple bacterial outer membrane modifications, which are required for resistance to these membrane-targeting peptides. Mini-Tn5- lux mutant strains of Pseudomonas aeruginosa with Tn insertions disrupting outer membrane protective modifications were assessed for sensitivity against plant defensin peptides. These transcriptional lux reporter strains were also evaluated for lux gene expression in response to sublethal plant defensin exposure. Also, a plant pathogen, Pseudomonas syringae pv. syringae was modified through transposon mutagenesis to …


An Analysis Of Crispr-Cas Gene Editing In Agriculture, Ashley Laliberte Apr 2020

An Analysis Of Crispr-Cas Gene Editing In Agriculture, Ashley Laliberte

Honors Scholar Theses

The CRISPR-Cas system is a promising form of gene editing, especially for the agriculture industry. The ability to make single-nucleotide edits within a gene of interest, without the need to introduce foreign DNA, is a powerful tool for designing healthier and more efficient crops and food animals. This system provides opportunity for increased nutritional value, decreased food waste, and more economically and environmentally sustainable food production. Though this biotechnology is facing mechanistic limitations due to off-target effects and inefficient homology-directed repair, vast improvements have already been made to improve its efficacy. The CRISPR-Cas system is already the most advanced form …


The Growing Threat Of Agroterrorism And Strategies For Agricultural Defense, Alyssa Forrest Apr 2020

The Growing Threat Of Agroterrorism And Strategies For Agricultural Defense, Alyssa Forrest

Senior Honors Theses

Due to the dynamic nature of human conflict, non-traditional terror tactics have evolved to undermine the socioeconomic stability of targeted societies. Considering the landscape in which terrorists operate, emphasis on more subversive methods of biological terror have become prominent in recent decades. Agroterrorism, or the use of plant pathogens to infect a nation’s cultivated crops, is an emerging topic due to its threat to global food security and economic stability. Although emergency preparedness objectives have been enacted at national, state, and even local levels, preemptive measures can no longer remain the sole responsibility of intelligence and law enforcement agencies. The …


Functional Characterization Of Petiolule-Like Pulvinus (Plp) Gene In Abscission Zone Development In Medicago Truncatula And Its Application To Genetic Improvement Of Alfalfa, Juan Du, Shaoyun Lu, Maofeng Chai, Chuanen Zhou, Liang Sun, Yuhong Tang, Jin Nakashima, Jaydeep Kolape, Zhaozhu Wen, Marjan Behzadirad, Tianxiu Zhong, Juan Sun, Yunwei Zhang, Zeng-Yu Wang Jan 2020

Functional Characterization Of Petiolule-Like Pulvinus (Plp) Gene In Abscission Zone Development In Medicago Truncatula And Its Application To Genetic Improvement Of Alfalfa, Juan Du, Shaoyun Lu, Maofeng Chai, Chuanen Zhou, Liang Sun, Yuhong Tang, Jin Nakashima, Jaydeep Kolape, Zhaozhu Wen, Marjan Behzadirad, Tianxiu Zhong, Juan Sun, Yunwei Zhang, Zeng-Yu Wang

Nebraska Center for Biotechnology: Faculty and Staff Publications

Alfalfa (Medicago sativa L.) is one of the most important forage crops throughout the world. Maximizing leaf retention during the haymaking process is critical for achieving superior hay quality and maintaining biomass yield. Leaf abscission process affects leaf retention. Previous studies have largely focused on the molecular mechanisms of floral organ, pedicel and seed abscission but scarcely touched on leaf and petiole abscission. This study focuses on leaf and petiole abscission in the model legume Medicago truncatula and its closely related commercial species alfalfa. By analysing the petiolule-like pulvinus (plp) mutant in M. truncatula at phenotypic level (breakstrength and …


Plant And Microbial Responses To Repeated Cu(Oh)2 Nanopesticide Exposures Under Different Fertilization Levels In An Agro-Ecosystem, Marie Simonin, Benjamin P. Colman, Weiyi Tang, Jonathan D. Judy, Steven M. Anderson, Christina M. Bergemann, Jennifer D. Rocca, Jason M. Unrine, Nicolas Cassar, Emily S. Bernhardt Jul 2018

Plant And Microbial Responses To Repeated Cu(Oh)2 Nanopesticide Exposures Under Different Fertilization Levels In An Agro-Ecosystem, Marie Simonin, Benjamin P. Colman, Weiyi Tang, Jonathan D. Judy, Steven M. Anderson, Christina M. Bergemann, Jennifer D. Rocca, Jason M. Unrine, Nicolas Cassar, Emily S. Bernhardt

Plant and Soil Sciences Faculty Publications

The environmental fate and potential impacts of nanopesticides on agroecosystems under realistic agricultural conditions are poorly understood. As a result, the benefits and risks of these novel formulations compared to the conventional products are currently unclear. Here, we examined the effects of repeated realistic exposures of the Cu(OH)2 nanopesticide, Kocide 3000, on simulated agricultural pastureland in an outdoor mesocosm experiment over 1 year. The Kocide applications were performed alongside three different mineral fertilization levels (Ambient, Low, and High) to assess the environmental impacts of this nanopesticide under low-input or conventional farming scenarios. The effects of Kocide over time were …


Lipid Transport Required To Make Lipids Of Photosynthetic Membranes, Evan Labrant, Allison C. Barnes, Rebecca Roston Jun 2018

Lipid Transport Required To Make Lipids Of Photosynthetic Membranes, Evan Labrant, Allison C. Barnes, Rebecca Roston

Department of Biochemistry: Faculty Publications

Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane …


Structure Of The Ambrosia Beetle (Coleoptera: Curculionidae) Mycangia Revealed Through Micro-Computed Tomography, You Li, Yongying Ruan, Matthew T. Kasson, Edward L. Stanley, Conrad P.D.T Gillett, Andrew J. Johnson, Mengna Zhang, Jiri Hulcr Jan 2018

Structure Of The Ambrosia Beetle (Coleoptera: Curculionidae) Mycangia Revealed Through Micro-Computed Tomography, You Li, Yongying Ruan, Matthew T. Kasson, Edward L. Stanley, Conrad P.D.T Gillett, Andrew J. Johnson, Mengna Zhang, Jiri Hulcr

Faculty & Staff Scholarship

Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) rely on a symbiosis with fungi for their nutrition. Symbiotic fungi are preserved and transported in specialized storage structures called mycangia. Although pivotal in the symbiosis, mycangia have been notoriously difficult to study, given their minute size and membranous structure. We compared the application of novel visualization methods for the study of mycangia, namely micro-computed tomography (micro-CT) and laser ablation tomography (LATscan) with traditional paraffin sectioning. Micro-CT scanning has shown the greatest promise in new organ discovery, while sectioning remains the only method with sufficient resolution for cellular visualization. All three common types …


Chitosan Biopolymer Promotes Yield And Stimulates Accumulation Of Antioxidants In Strawberry Fruit, Mosaddiqur Rahman, Julakha Akter Mukta, Abdullah As Sabir, Dipall Rani Gupta, Mohammed Mohi-Ud-Din, Mirza Hasanuzzaman, Md. Giashuddin Miah, Mahfuzur Rahman, Md Tofazzai Islam Jan 2018

Chitosan Biopolymer Promotes Yield And Stimulates Accumulation Of Antioxidants In Strawberry Fruit, Mosaddiqur Rahman, Julakha Akter Mukta, Abdullah As Sabir, Dipall Rani Gupta, Mohammed Mohi-Ud-Din, Mirza Hasanuzzaman, Md. Giashuddin Miah, Mahfuzur Rahman, Md Tofazzai Islam

Faculty & Staff Scholarship

Strawberry is a well-known source of natural antioxidants with excellent free radical scav- enging capacity. This study determined the effects of chitosan application in field condition on plant growth, fruit yield and antioxidant activities in strawberry fruit. Foliar applications of chitosan on strawberry significantly increased plant growth and fruit yield (up to 42% higher) compared to untreated control. Increased fruit yield was attributed to higher plant growth, individual fruit weight and total fruit weight/plant due to the chitosan application. Surprisingly, the fruit from plants sprayed with chitosan also had significantly higher contents (up to 2.6- fold) of carotenoids, anthocyanins, flavonoids …


Pleiotropic And Epistatic Network-Based Discovery: Integrated Networks For Target Gene Discovery, Deborah Weighill, Piet Jones, Manesh Shah, Priya Ranjan, Wellington Muchero, Jeremy Schmutz, Avinash Sreedasyam, David Macaya-Sanz, Robert Sykes, Nan Zhao, Madhavi Z. Martin, Stephen Difazio, Timothy J. Tschaplinski, Gerald Tuskan, Daniel Jacobson Jan 2018

Pleiotropic And Epistatic Network-Based Discovery: Integrated Networks For Target Gene Discovery, Deborah Weighill, Piet Jones, Manesh Shah, Priya Ranjan, Wellington Muchero, Jeremy Schmutz, Avinash Sreedasyam, David Macaya-Sanz, Robert Sykes, Nan Zhao, Madhavi Z. Martin, Stephen Difazio, Timothy J. Tschaplinski, Gerald Tuskan, Daniel Jacobson

Faculty & Staff Scholarship

Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant’s sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes use …


Plant Probiotic Bacteria Bacillus And Paraburkholderia Improve Growth, Yield And Content Of Antioxidants In Strawberry Fruit, Mosaddiqur Rahman, Abdullah As Sabir, Julakha Akter Mukrta, Mohibul Alam Khan, Mohammed Mohi-Ud-Din, Giashuddin Miah, Mahfuzur Rahman, M. Tofazzal Islam Jan 2018

Plant Probiotic Bacteria Bacillus And Paraburkholderia Improve Growth, Yield And Content Of Antioxidants In Strawberry Fruit, Mosaddiqur Rahman, Abdullah As Sabir, Julakha Akter Mukrta, Mohibul Alam Khan, Mohammed Mohi-Ud-Din, Giashuddin Miah, Mahfuzur Rahman, M. Tofazzal Islam

Faculty & Staff Scholarship

Strawberry is an excellent source of natural antioxidants with high capacity of scavenging free radicals.

This study evaluated the effects of two plant probiotic bacteria, Bacillus amylolequefaciens BChi1 and Paraburkholderia fungorum BRRh-4 on growth, fruit yield and antioxidant contents in strawberry fruits. Root dipping of seedlings (plug plants) followed by spray applications of both probiotic bacteria in the field on foliage significantly increased fruit yield (up to 48%) over non-treated control. Enhanced fruit yield likely to be linked with higher root and shoot growth, individual and total fruit weight/plant and production of phytohormone by the probiotic bacteria applied on plants. …


Advanced Biotechnology Tools For Invasive Species Management, Invasive Species Advisory Committee Dec 2017

Advanced Biotechnology Tools For Invasive Species Management, Invasive Species Advisory Committee

National Invasive Species Council

Increasingly, genetic tools are being used to detect and solve pressing environmental, social, and health-related challenges. It is clear that investments in technology innovation can be game changing, as advances in biotechnology may provide new methods to protect the nation’s resources from the negative impacts of invasive species. The current toolbox of management options is recognizably insufficient to deal with many of the high-impact species that have been introduced. However, “surrendering” to these species is generally not a viable option from ecological, health, economic, socio-cultural, or political perspectives. Cost-efficient solutions to these “grand invasive species challenges” need to be found. …


Towards The Development Of A Sustainable Soya Bean-Based Feedstock For Aquaculture, Hyunwoo Park, Steven Weier, Fareha Razvi, Pamela A. Peña, Neil A. Sims, Jennica Lowell, Cory Hungate, Karma Kissinger, Gavin Key, Paul Fraser, Jonathan Napier, Edgar B. Cahoon, Thomas Clemente Feb 2017

Towards The Development Of A Sustainable Soya Bean-Based Feedstock For Aquaculture, Hyunwoo Park, Steven Weier, Fareha Razvi, Pamela A. Peña, Neil A. Sims, Jennica Lowell, Cory Hungate, Karma Kissinger, Gavin Key, Paul Fraser, Jonathan Napier, Edgar B. Cahoon, Thomas Clemente

Center for Plant Science Innovation: Faculty and Staff Publications

Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean-based protein and a high Omega-3 fatty acid soya bean oil, enriched with alpha-linolenic …


Genetic Engineering And Sustainable Crop Disease Management: Opportunities For Case-By-Case Decision-Making, Paul Vincelli May 2016

Genetic Engineering And Sustainable Crop Disease Management: Opportunities For Case-By-Case Decision-Making, Paul Vincelli

Plant Pathology Faculty Publications

Genetic engineering (GE) offers an expanding array of strategies for enhancing disease resistance of crop plants in sustainable ways, including the potential for reduced pesticide usage. Certain GE applications involve transgenesis, in some cases creating a metabolic pathway novel to the GE crop. In other cases, only cisgenessis is employed. In yet other cases, engineered genetic changes can be so minimal as to be indistinguishable from natural mutations. Thus, GE crops vary substantially and should be evaluated for risks, benefits, and social considerations on a case-by-case basis. Deployment of GE traits should be with an eye towards long-term sustainability; several …


Drought Responsive Gene Expression Regulatory Divergence Between Upland And Lowland Ecotypes Of A Perennial C4 Grass, John T. Lovell, Scott Schwartz, David B. Lowry, Eugene V. Shakirov, Jason E. Bonnette, Xiaoyu Weng, Mei Wang, Jenifer Johnson, Avinash Sreedasyam, Christopher Plott, Jerry Jenkins, Jeremy Schmutz, Thomas E. Juenger Mar 2016

Drought Responsive Gene Expression Regulatory Divergence Between Upland And Lowland Ecotypes Of A Perennial C4 Grass, John T. Lovell, Scott Schwartz, David B. Lowry, Eugene V. Shakirov, Jason E. Bonnette, Xiaoyu Weng, Mei Wang, Jenifer Johnson, Avinash Sreedasyam, Christopher Plott, Jerry Jenkins, Jeremy Schmutz, Thomas E. Juenger

Biological Sciences Faculty Research

Climatic adaptation is an example of a genotype-by-environment interaction (G×E) of fitness. Selection upon gene expression regulatory variation can contribute to adaptive phenotypic diversity; however, surprisingly few studies have examined how genome-wide patterns of gene expression G×E are manifested in response to environmental stress and other selective agents that cause climatic adaptation. Here, we characterize drought-responsive expression divergence between upland (drought-adapted) and lowland (mesic) ecotypes of the perennial C4 grass, Panicum hallii, in natural field conditions. Overall, we find that cis-regulatory elements contributed to gene expression divergence across 47% of genes, 7.2% of which exhibit drought-responsive G×E. …


Biological Lignocellulose Solubilization: Comparative Evaluation Of Biocatalysts And Enhancement Via Cotreatment, Julie M. D. Paye, Anna Guseva, Sarah K. Hammer, Erica Gjersing Jan 2016

Biological Lignocellulose Solubilization: Comparative Evaluation Of Biocatalysts And Enhancement Via Cotreatment, Julie M. D. Paye, Anna Guseva, Sarah K. Hammer, Erica Gjersing

Dartmouth Scholarship

Feedstock recalcitrance is the most important barrier impeding cost-effective production of cellulosic biofuels. Pioneer commercial cellulosic ethanol facilities employ thermochemical pretreatment and addition of fungal cellulase, reflecting the main research emphasis in the field. However, it has been suggested that it may be possible to process cellulosic biomass without thermochemical pretreatment using thermophilic, cellulolytic bacteria. To further explore this idea, we examine the ability of various biocatalysts to solubilize autoclaved but otherwise unpretreated cellulosic biomass under controlled but not industrial conditions.


Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring May 2015

Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring

Dartmouth Scholarship

The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum.

.


Reducing The Negative Human-Health Impacts Of Bioenergy Crop Emissions Through Region-Specific Crop Selection, William Christian Porter, Todd N. Rosenstiel, Alex Guenther, Jean-Francois Lamarque, Kelley Barsanti May 2015

Reducing The Negative Human-Health Impacts Of Bioenergy Crop Emissions Through Region-Specific Crop Selection, William Christian Porter, Todd N. Rosenstiel, Alex Guenther, Jean-Francois Lamarque, Kelley Barsanti

Biology Faculty Publications and Presentations

An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O3) and fine particulate matter (PM2.5) levels as a result of large changes in biogenic emissions. Using the Community Earth System …


Assessment Of Variation In Susceptibility Of The Fall Armyworm, Spodoptera Frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), To Bacillus Thuringiensis Toxins, Karen Ferreira Da Silva May 2015

Assessment Of Variation In Susceptibility Of The Fall Armyworm, Spodoptera Frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), To Bacillus Thuringiensis Toxins, Karen Ferreira Da Silva

Department of Entomology: Dissertations, Theses, and Student Research

The fall armyworm, Spodoptera frugiperda, is a polyphagous insect pest affecting multiple crops. Fall armyworm is managed with insecticides and corn hybrids expressing insecticidal proteins derived from Bacillus thuringiensis. The early detection of insect resistance is important for making appropriate management decisions informs IPM and IRM recommendations.

The objective of the first study was to establish baseline susceptibility of fall armyworm populations to the Cry1F Bt insecticidal protein, emphasizing collections from locations where fall armyworm overwinters in the U.S. Fall armyworm neonates were exposed to artificial diet treated with increasing Cry1F concentrations, and mortality and growth inhibition were …


The Exometabolome Of Clostridium Thermocellum Reveals Overflow Metabolism At High Cellulose Loading, Evert K. Holwerda, Philip G. Thorne, Daniel G. Olson, Daniel Amador-Noguez, Nancy L. Engle, Timothy J. Tschaplinski, Johannes P. Van Dijken, Lee R. Lynd Oct 2014

The Exometabolome Of Clostridium Thermocellum Reveals Overflow Metabolism At High Cellulose Loading, Evert K. Holwerda, Philip G. Thorne, Daniel G. Olson, Daniel Amador-Noguez, Nancy L. Engle, Timothy J. Tschaplinski, Johannes P. Van Dijken, Lee R. Lynd

Dartmouth Scholarship

BackgroundClostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. .


Overexpression Of Patatin-Related Phospholipase Aiiiβ Altered The Content And Composition Of Sphingolipids In Arabidopsis, Maoyin Li, Jennifer E. Markham, Xuemin Wang Oct 2014

Overexpression Of Patatin-Related Phospholipase Aiiiβ Altered The Content And Composition Of Sphingolipids In Arabidopsis, Maoyin Li, Jennifer E. Markham, Xuemin Wang

Department of Biochemistry: Faculty Publications

In plants, fatty acids are primarily synthesized in plastids and then transported to the endoplasmic reticulum (ER) for synthesis of most of the complex membrane lipids, including glycerolipids and sphingolipids. The first step of sphingolipid synthesis, which uses a fatty acid and a serine as substrates, is critical for sphingolipid homeostasis; its disruption leads to an altered plant growth. Phospholipase As have been implicated in the trafficking of fatty acids from plastids to the ER. Previously, we found that overexpression of a patatin-related phospholipase, pPLAIIIβ, resulted in a smaller plant size and altered anisotropic cell expansion. Here, we determined the …


Genome Wide Association Mapping Of Grain Arsenic, Copper, Molybdenum And Zinc In Rice (Oryza Sativa L.) Grown At Four International Field Sites, Gareth J. Norton, Alex Douglas, Brett Lahner, Elena Yakubova, Mary Lou Guerinot, Shannon R.M Pinson, Lee Tarpley, George C. Eizenga, Steve P. Mcgrath, Fang-Jie Zhao Feb 2014

Genome Wide Association Mapping Of Grain Arsenic, Copper, Molybdenum And Zinc In Rice (Oryza Sativa L.) Grown At Four International Field Sites, Gareth J. Norton, Alex Douglas, Brett Lahner, Elena Yakubova, Mary Lou Guerinot, Shannon R.M Pinson, Lee Tarpley, George C. Eizenga, Steve P. Mcgrath, Fang-Jie Zhao

Dartmouth Scholarship

The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ~300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with …


Arabidopsis Accelerated Cell Death 11, Acd11, Is A Ceramide-1-Phosphate Transfer Protein And Intermediary Regulator Of Phytoceramide Levels, Dhirendra K. Simanshu, Xiuhong Zhai, David Munch, Daniel Hofius, Jennifer E. Markham, Jacek Bielawski, Alicja Bielawska, Lucy Malinina, Julian G. Molotkovsky, John W. Mundy, Dinshaw J. Patel, Rhoderick E. Brown Jan 2014

Arabidopsis Accelerated Cell Death 11, Acd11, Is A Ceramide-1-Phosphate Transfer Protein And Intermediary Regulator Of Phytoceramide Levels, Dhirendra K. Simanshu, Xiuhong Zhai, David Munch, Daniel Hofius, Jennifer E. Markham, Jacek Bielawski, Alicja Bielawska, Lucy Malinina, Julian G. Molotkovsky, John W. Mundy, Dinshaw J. Patel, Rhoderick E. Brown

Department of Biochemistry: Faculty Publications

The accelerated cell death 11 (acd11) mutant of Arabidopsis provides a genetic model for studying immune response activation and localized cellular suicide that halt pathogen spread during infection in plants. Here, we elucidate ACD11 structure and function and show that acd11 disruption dramatically alters the in vivo balance of sphingolipid mediators that regulate eukaryotic-programmed cell death. In acd11 mutants, normally low ceramide-1- phosphate (C1P) levels become elevated, but the relatively abundant cell death inducer phytoceramide rises acutely. ACD11 exhibits selective intermembrane transfer of C1P and phyto-C1P. Crystal structures establish C1P binding via a surface-localized, phosphate headgroup recognition center …


Estimating The Frequency Of Cry1f Resistance In Field Populations Of The European Corn Borer (Lepidoptera: Crambidae), Blair D. Siegfried, Murugesan Rangasamy, Haichuan Wang, Terence A. Spencer, Chirakkal V. Haridas, Brigitte Tenhumberg, Douglas V. Sumerford, Nicholas P. Storer Jan 2014

Estimating The Frequency Of Cry1f Resistance In Field Populations Of The European Corn Borer (Lepidoptera: Crambidae), Blair D. Siegfried, Murugesan Rangasamy, Haichuan Wang, Terence A. Spencer, Chirakkal V. Haridas, Brigitte Tenhumberg, Douglas V. Sumerford, Nicholas P. Storer

School of Biological Sciences: Faculty Publications

Background: Transgenic corn hybrids that express toxins from Bacillus thuringiensis (Bt) have suppressed European corn borer populations and reduced the pest status of this insect throughout much of the US corn belt. A major assumption of the high-dose/refuge strategy proposed for insect resistance management and Bt corn is that the frequency of resistance alleles is low so that resistant pests surviving exposure to Bt corn will be rare. Results: The frequency of resistance to the Cry1F Bt toxin was estimated using two different screening tools and compared with annual susceptibility monitoring based on diagnostic bioassays and LC50 …


Tracking The Cellulolytic Activity Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon M. Wolfaardt, David Allen, Steven N. Liss, Lee R. Lynd Nov 2013

Tracking The Cellulolytic Activity Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon M. Wolfaardt, David Allen, Steven N. Liss, Lee R. Lynd

Dartmouth Scholarship

Microbial cellulose conversion by Clostridium thermocellum 27405 occurs predominantly through the activity of substrate-adherent bacteria organized in thin, primarily single cell-layered biofilms. The importance of cellulosic surface exposure to microbial hydrolysis has received little attention despite its implied impact on conversion kinetics.


A Morphological Analysis Of A Hybrid Swarm Of Native Ulmus Rubra And Introduced U. Pumila (Ulmaceae) In Southeastern Nebraska, Christian Elowsky, Ingrid E. Jordon-Thaden, Robert B. Kaul Jul 2013

A Morphological Analysis Of A Hybrid Swarm Of Native Ulmus Rubra And Introduced U. Pumila (Ulmaceae) In Southeastern Nebraska, Christian Elowsky, Ingrid E. Jordon-Thaden, Robert B. Kaul

Nebraska Center for Biotechnology: Faculty and Staff Publications

The parental species and hybrid swarm of native Ulmus rubra Muhl. and the introduced, naturalized and weedy U. pumila L. were investigated in a 65-km transect in Lancaster, Saunders, and Butler counties in Nebraska. Thirty-two trees of U. rubra, 32 of U. pumila, and 50 of the hybrid swarm were sampled for leaves and buds and subsampled for flowers and fruits. Leaves were measured for petiole length, blade length, width, primary and secondary teeth per cm, number of secondary teeth per primary tooth, and texture. Buds were scored for color and distribution of trichomes. Flowers were sampled for stamen counts …


Connections Between Sphingosine Kinase And Phospholipase D In The Abscisic Acid Signaling Pathway In Arabidopsis, Liang Guo, Girish Mishra, Jennifer E. Markham, Maoyin Li, Amanda Tawfall, Ruth Welti, Xuemin Wang Mar 2012

Connections Between Sphingosine Kinase And Phospholipase D In The Abscisic Acid Signaling Pathway In Arabidopsis, Liang Guo, Girish Mishra, Jennifer E. Markham, Maoyin Li, Amanda Tawfall, Ruth Welti, Xuemin Wang

Department of Biochemistry: Faculty Publications

Background: Sphingosine kinase (SPHK) and phospholipaseD(PLD) produce different lipid mediators involved in abscisic acid (ABA) response.

Results: Ablation of SPHKs and PLDα1 attenuates ABA-induced production of LCBPs and PA. Phyto-S1P closes stomata in sphk1, sphk2, but not in pldα1, whereas PA closes stomata in all mutants.

Conclusion: SPHK acts upstream of PLDα1, whereas PLDα1 promotes SPHK.

Significance: The roles of lipid messengers in the ABA signaling pathway are clarified.


Purification And Characterization Of Novel Nucleases From A Thermophilic Fungus, Kyle S. Landry Jan 2012

Purification And Characterization Of Novel Nucleases From A Thermophilic Fungus, Kyle S. Landry

Masters Theses 1911 - February 2014

A thermophilic fungus was isolated from composted horse manure. The organism was as a Chaetomium sp. by sequencing the highly conserved ITS region of the fungus and comparing to known regions in a genomic database and was referred to as TM-417. TM-417 was found to have an optimal growth temperature of 45 oC and an optimal pH of 7.0. An extracellular DNase and RNase was found to be produced by the isolate and were purified 145.58-fold and 127.6-fold respectively using a combination of size exclusion chromatography and a novel affinity membrane purification system. The extent of purification was determined …