Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biotechnology

Mitochondrial Reactive Oxygen Species In Lipotoxic Hearts Induces Post-Translational Modifications Of Akap121, Drp1 And Opa1 That Promote Mitochondrial Fission, Kensuke Tsushima, Heiko Bugger, Adam R. Wende, Jamie Soto, Gregory A. Jenson, Austin R. Tor, Rose Mcglauflin, Helena C. Kenny, Yuan Zhang, Rhonda Souvenir, Xiao X. Hu, Crystal L. Sloan, Renata O. Pereira, Vitor A. Lira, Kenneth W. Spitzer, Terry L. Sharp, Kooresh I. Shoghi, Genevieve C. Sparagna, Eva A. Rog-Zielinska, Peter Kohl, Oleh Khalimonchuk, Jean E. Schaffer, E. Dale Abel Nov 2017

Mitochondrial Reactive Oxygen Species In Lipotoxic Hearts Induces Post-Translational Modifications Of Akap121, Drp1 And Opa1 That Promote Mitochondrial Fission, Kensuke Tsushima, Heiko Bugger, Adam R. Wende, Jamie Soto, Gregory A. Jenson, Austin R. Tor, Rose Mcglauflin, Helena C. Kenny, Yuan Zhang, Rhonda Souvenir, Xiao X. Hu, Crystal L. Sloan, Renata O. Pereira, Vitor A. Lira, Kenneth W. Spitzer, Terry L. Sharp, Kooresh I. Shoghi, Genevieve C. Sparagna, Eva A. Rog-Zielinska, Peter Kohl, Oleh Khalimonchuk, Jean E. Schaffer, E. Dale Abel

Department of Biochemistry: Faculty Publications

Rationale: Cardiac lipotoxicity, characterized by increased uptake, oxidation and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood.

Objective: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo.

Methods and Results: Using a transgenic mouse model of cardiac lipotoxicity overexpressing long-chain acyl-CoA synthetase 1 in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation …


Oxidative Stress, Metabolomics Profiling, And Mechanism Of Local Anesthetic Induced Cell Death In Yeast, Cory Honsinger Thomas Boone, Ryan A. Grove, Dana Adamcova, Javier Seravalli, Jiri Adamec Jan 2017

Oxidative Stress, Metabolomics Profiling, And Mechanism Of Local Anesthetic Induced Cell Death In Yeast, Cory Honsinger Thomas Boone, Ryan A. Grove, Dana Adamcova, Javier Seravalli, Jiri Adamec

Department of Biochemistry: Faculty Publications

The World Health Organization designates lidocaine as an essential medicine in healthcare, greatly increasing the probability of human exposure. Its use has been associated with ROS generation and neurotoxicity. Physiological and metabolomic alterations, and genetics leading to the clinically observed adverse effects have not been temporally characterized. To study alterations that may lead to these undesirable effects, Saccharomyces cerevisiae grown on aerobic carbon sources to stationary phase was assessed over 6 h. Exposure of an LC50 dose of lidocaine, increased mitochondrial depolarization and ROS/RNS generation assessed using JC-1, ROS/RNS specific probes, and FACS. Intracellular calcium also increased, assessed by …


Evidence For Pipecolate Oxidase In Mediating Protection Against Hydrogen Peroxide Stress, Sathish Kumar Natarajan, Ezhumalai Muthukrishnan, Oleh Khalimonchuk, Justin L. Mott, Donald F. Becker Jan 2016

Evidence For Pipecolate Oxidase In Mediating Protection Against Hydrogen Peroxide Stress, Sathish Kumar Natarajan, Ezhumalai Muthukrishnan, Oleh Khalimonchuk, Justin L. Mott, Donald F. Becker

Department of Biochemistry: Faculty Publications

Pipecolate, an intermediate of the lysine catabolic pathway, is oxidized to Δ1-piperideine-6-carboxylate (P6C) by the flavoenzyme lpipecolate oxidase (PIPOX). P6C spontaneously hydrolyzes to generate α-aminoadipate semialdehyde, which is then converted into α-aminoadipate acid by α-aminoadipatesemialdehyde dehydrogenase. l-pipecolate was previously reported to protect mammalian cells against oxidative stress. Here, we examined whether PIPOX is involved in the mechanism of pipecolate stress protection. Knockdown of PIPOX by small interference RNA abolished pipecolate protection against hydrogen peroxide-induced cell death in HEK293 cells suggesting a critical role for PIPOX. Subcellular fractionation analysis showed that PIPOX is localized in the mitochondria of HEK293 …


Stress Adaptation In A Pathogenic Fungus, Alistair J. P. Brown, Susan Budge, Despoina Kaloriti, Anna Tillmann, Mette D. Jacobsen, Zhikang Yin, Iuliana V. Ene, Iryna Bohovych, Doblin Sandai, Stavroula Kastora, Joanna Potrykus, Elizabeth R. Ballou, Delma S. Childers, Shahida Shahana, Michelle D. Leach Jan 2014

Stress Adaptation In A Pathogenic Fungus, Alistair J. P. Brown, Susan Budge, Despoina Kaloriti, Anna Tillmann, Mette D. Jacobsen, Zhikang Yin, Iuliana V. Ene, Iryna Bohovych, Doblin Sandai, Stavroula Kastora, Joanna Potrykus, Elizabeth R. Ballou, Delma S. Childers, Shahida Shahana, Michelle D. Leach

Department of Biochemistry: Faculty Publications

Candida albicans is a major fungal pathogen of humans. This yeast is carried by many individuals as a harmless commensal, but when immune defences are perturbed it causes mucosal infections (thrush). Additionally, when the immune system becomes severely compromised, C. albicans often causes life-threatening systemic infections. A battery of virulence factors and fitness attributes promote the pathogenicity of C. albicans. Fitness attributes include robust responses to local environmental stresses, the inactivation of which attenuates virulence. Stress signalling pathways in C. albicans include evolutionarily conserved modules. However, there has been rewiring of some stress regulatory circuitry such that the roles of …