Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biotechnology

Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring May 2015

Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring

Dartmouth Scholarship

The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum.

.


Increasing Expression Of Hepatitis B Surface Antigen In Maize Through Breeding, Erin Suzanne Miller Mar 2015

Increasing Expression Of Hepatitis B Surface Antigen In Maize Through Breeding, Erin Suzanne Miller

Master's Theses

The hepatitis B virus (HBV) is a common virus, with two billion people infected worldwide. It causes approximately 600,000 deaths each year, despite the availability of an effective vaccine since 1982. Maize as a platform for oral vaccination can supply a heat stable vaccine, which does not require syringes or trained personnel to administer. The Hepatitis B Surface antigen was transformed into maize and this seed was used to evaluate expression levels through the breeding process. The transgene was transferred into two elite maize inbreds by backcrossing. Highest expressing ears were selected each generation until approximately 99% commercial parent was …