Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biotechnology

Advances In Phaeodactylum Tricornutum Nuclear Engineering, Mark Pampuch Jul 2023

Advances In Phaeodactylum Tricornutum Nuclear Engineering, Mark Pampuch

Electronic Thesis and Dissertation Repository

The marine diatom Phaeodactylum tricornutum has the potential to become an excellent platform for the sustainable production of valuable compounds and pharmaceuticals, but currently large-scale engineering of this organism remains a challenge due factors like inefficient genetic transformation protocols and a lack of accurate genomic data. This thesis addresses these two bottlenecks by (i) optimizing an electroporation protocol to P. tricornutum and (ii) remapping genomic data from a scaffolded genome assembly to a telomere-to-telomere genome assembly. An optimized transformation protocol was developed that could consistently transform blunt-ended and DNA with overhangs and yielded up to 1000+ colony forming units per …


Reactive Oxygen Species (Ros) Mediated Degradation Of Organophosphate T Pesticides By The Green Microalgae Coccomyxa Subellipsoidea☆, Timothy J Nicodemus, Concetta C. Dirusso, Mark A. Wilson, Paul N. Black Jan 2020

Reactive Oxygen Species (Ros) Mediated Degradation Of Organophosphate T Pesticides By The Green Microalgae Coccomyxa Subellipsoidea☆, Timothy J Nicodemus, Concetta C. Dirusso, Mark A. Wilson, Paul N. Black

Department of Biochemistry: Faculty Publications

The aim of this study was to define the mechanism allowing the green alga Coccomyxa subellipsoidea to break down organophosphates from agricultural run-off. This study found that metabolically active cultures of the microalga C. subellipsoidea breakdown organophosphates (paraoxon, malathion and diazinon) with differing structural conformations in freshwater through a mechanism that requires the formation of reactive oxygen species (ROS) with little to no toxic effects on the algae. Under these conditions, organophosphate levels were reduced to 0.1 mg/mL or less over the 8–10 day experimental period. These findings demonstrate a biological- based system can be tailored for the remediation of …


Production And Harvest Of Microalgae In Wastewater Raceways With Resource Recycling, Alexander Colin Roberts Dec 2015

Production And Harvest Of Microalgae In Wastewater Raceways With Resource Recycling, Alexander Colin Roberts

Master's Theses

Microalgae can be grown on municipal wastewater media to both treat the wastewater and produce feedstock for algae biofuel production. However the reliability of treatment must be demonstrated, as well as high areal algae productivity on recycled wastewater media and efficient sedimentation harvesting. This processes was studied at pilot scale in the present research.

A pilot facility was operated with nine CO2-supplemented raceway ponds, each with a 33-m2 surface area and a 0.3-m depth, continuously from March 6, 2013 through September 24, 2014. The ponds were operated as three sets of triplicates with two sets continuously fed …


Triacylglycerol Synthesis During Nitrogen Stress Involves The Prokaryotic Lipid Synthesis Pathway And Acyl Chain Remodeling In The Microalgae Coccomyxa Subellipsoidea, James W. Allen, Concetta C. Dirusso, Paul N. Black Jan 2015

Triacylglycerol Synthesis During Nitrogen Stress Involves The Prokaryotic Lipid Synthesis Pathway And Acyl Chain Remodeling In The Microalgae Coccomyxa Subellipsoidea, James W. Allen, Concetta C. Dirusso, Paul N. Black

Department of Biochemistry: Faculty Publications

Triglyceride (TAG) synthesis during nitrogen starvation and recovery was addressed using Coccomyxa subellipsoidea by analyzing acylchain composition and redistribution using a bioreactor-controlled time course. Galactolipids, phospholipids and TAGs were profiled using liquid chromatography tandem mass spectroscopy (LC–MS/MS). TAG levels increased linearly through 10 days of N starvation to a final concentration of 12.6% dry weight (DW), while chloroplast membrane lipids decreased from 5% to 1.5% DW. The relative quantities of TAG molecular species, differing in acyl chain length and glycerol backbone position, remained unchanged from 3 to 10 days of N starvation. Six TAG species comprised approximately half the TAG …


Evaluation Of Three Herbicide Resistance Genes For Use In Genetic Transformations And For Potential Crop Protection In Algae Production, Andrew J. Bruggeman, Daniel Kuehler, Donald P. Weeks Jan 2014

Evaluation Of Three Herbicide Resistance Genes For Use In Genetic Transformations And For Potential Crop Protection In Algae Production, Andrew J. Bruggeman, Daniel Kuehler, Donald P. Weeks

Department of Biochemistry: Faculty Publications

Genes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.79-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells. A mutant Chlamydomonas protoporphyrinogen oxidase (protox, PPO) gene previously shown to produce an enzyme insensitive to PPO-inhibiting herbicides, when genetically engineered, …