Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Common Garden Study Reveals Frost-Tolerant, Generalist Northern Seed Sources Are Best Suited To Expand Range Of Quercus Rubra, Emily Lindback Jan 2022

Common Garden Study Reveals Frost-Tolerant, Generalist Northern Seed Sources Are Best Suited To Expand Range Of Quercus Rubra, Emily Lindback

Dissertations, Master's Theses and Master's Reports

Climate change is shifting the potential suitable range of northern red oak (Quercus rubra L.) faster than it can migrate, creating an adaptation lag. Quercus rubra is prominent in eastern North American forests and important for its carbon sequestration, ecological roles, and economic significance. Our study addresses which populations of Q. rubra are best suited for climatic conditions at the northern and central range limits. Our findings can inform forestry management policies such as assisted migration, where species are transferred within their native range to mitigate the effects of climate change. We planted over 800 Q. rubra seedlings …


Metagenomic Identification And Classification Of The Mercury-Methylating Gene Hgca In Response To Water Table And Plant Functional Group Manipulations In Peat Soil, Madeline Peterson Jan 2021

Metagenomic Identification And Classification Of The Mercury-Methylating Gene Hgca In Response To Water Table And Plant Functional Group Manipulations In Peat Soil, Madeline Peterson

Dissertations, Master's Theses and Master's Reports

Methyl-mercury (MeHg) is a potent neurotoxin that threatens the health of humans and wildlife alike. Climate warming threatens to shift regional precipitation and climate regimes in peatland environments, which could destabilize northern peatlands and accelerate both Hg release from soil and MeHg production. Peatlands are among the leading hotspots for MeHg, yet little is known about the community composition or functional relationship of mercury-methylating microbes in response to varying environmental conditions. The recognized mercury-methylating genes responsible for this activity are the obligatory gene pair hgcA and hgcB. Metagenomic data from the full-factorial peatland mesocosm experiment PEATcosm was obtained to …


Reexamining The Utility Of Existing Climate Adaptation Frameworks Through Application On A Northern Forest, Alexander Rice Jan 2019

Reexamining The Utility Of Existing Climate Adaptation Frameworks Through Application On A Northern Forest, Alexander Rice

Dissertations, Master's Theses and Master's Reports

A review of the literature reveals the strengths and limitations of various climate adaptation frameworks and illuminates a general path by which a type of adaptation can be achieved. A number of useful frameworks exist but the number of independent case studies demonstrating the adaptation process in a detailed manner is much more limited. Additionally, components of the various adaptation processes can often seem vague and concepts such as adaptability ill-defined. For land managers approaching climate adaptation independently can be difficult, particularly in the areas of goal creation and vulnerability assessment. Within frameworks where user-defined adaptation goals dictate whether or …


Biogeochemical Response To Vegetation And Hydrologic Change In An Alaskan Boreal Fen Ecosystem, Danielle L. Rupp Jan 2019

Biogeochemical Response To Vegetation And Hydrologic Change In An Alaskan Boreal Fen Ecosystem, Danielle L. Rupp

Dissertations, Master's Theses and Master's Reports

Boreal peatlands store approximately one third of the earth’s terrestrial carbon, locked away in currently waterlogged and frozen conditions. Peatlands of boreal and arctic ecosystems are affected increasingly by shifting hydrology caused by climate change. The consequences of these relatively rapid ecosystem changes on carbon cycling between the landscape and the atmosphere could provide an amplifying feedback to climate warming. Alternatively, the advancement of terrestrial vegetation into once waterlogged soils could uptake carbon as a sink. Previous work suggests that fens will become an increasingly dominant landscape feature in the boreal. However, studies investigating fens, their response to hydrologic and …


Effects Of In-Situ Leaf-Level Canopy Warming In A Northern Hardwood Forest, Kelsey Carter Jan 2017

Effects Of In-Situ Leaf-Level Canopy Warming In A Northern Hardwood Forest, Kelsey Carter

Dissertations, Master's Theses and Master's Reports

Rising mean annual temperatures due to climate change have intensified the need to understand the effects of warming on plant physiological processes. Forest photosynthesis is the most important pathways of terrestrial carbon sequestration, yet continued warming could reduce this important carbon sink. Photosynthesis is highly sensitive to temperature and begins to decline after an optimum temperature (Topt) is reached, leading to reduced carbon uptake. To date, logistical difficulties have limited our ability to test photosynthetic responses to sustained warming in mature forest canopies. In order to understand how elevated temperatures will affect forest ecosystems, we need to be …


Assessing The Impacts Of Climate Change On The Surface Temperature Of Inland Lakes In Michigan, Kaitlin Reinl Jan 2016

Assessing The Impacts Of Climate Change On The Surface Temperature Of Inland Lakes In Michigan, Kaitlin Reinl

Dissertations, Master's Theses and Master's Reports

The aim of this study was to validate and apply a lake model for predicting the susceptibility of small inland lakes in Michigan to changes in thermal regime and increased cyanobacteria growth as a result of future climate conditions. The Freshwater Lake Model was selected, tested for sensitivity to various inputs, and validated through comparison to observed conditions. The sensitivity analysis showed that the lake model was most sensitive to solar radiation, air temperature, and air humidity. Comparison of predicted climate data with observed conditions revealed highly variable climate model error. The lake model validation was conducted using 10 lakes …


Instantaneous Photosynthetic Response To Temperature Of Mature Forest Canopies And Experimentally Warmed Seedlings, Alida C. Mau Jan 2015

Instantaneous Photosynthetic Response To Temperature Of Mature Forest Canopies And Experimentally Warmed Seedlings, Alida C. Mau

Dissertations, Master's Theses and Master's Reports - Open

Tropical trees have been shown to be more susceptible to warming compared to temperate species, and have shown growth and photosynthetic declines at elevated temperatures as little as 3oC above ambient. However, regional and global vegetation models lack the data needed to accurately represent physiological response to increased temperatures in tropical forests. We compared the instantaneous photosynthetic responses to elevated temperatures of four mature tropical rainforest tree species in Puerto Rico and the temperate broadleaf species sugar maple (Acer saccharum) in Michigan. Contrary to expectations, leaves in the upper canopy of both temperate and tropical forests had temperature …


Investigating The Effects Of Short- And Long-Term Climatic Variation On The Water Use Of Three Northern Hardwood Tree Species, Alex R. Collins Jan 2015

Investigating The Effects Of Short- And Long-Term Climatic Variation On The Water Use Of Three Northern Hardwood Tree Species, Alex R. Collins

Dissertations, Master's Theses and Master's Reports - Open

Many tree species are expected to decline in the northern Midwestern United States due to climate change increasing annual temperature 3-5º C by 2100. Sugar maple (Acer saccharum), an economically important timber and syrup species, is not expected to be sustainable in its current range under projected future climate, while trembling aspen (Populus tremuloides) and red maple (Acer rubrum) are expected to react more favorably to climate change. The success of individual tree species is dependent on how climate change will alter a species environment in regards to water use. Climate change could …


Warming Alters Photosynthetic Rates Of Sub-Boreal Peatland Vegetation, Arvo Aljaste Jan 2011

Warming Alters Photosynthetic Rates Of Sub-Boreal Peatland Vegetation, Arvo Aljaste

Dissertations, Master's Theses and Master's Reports - Open

Boreal peatlands are important in the global carbon cycle. Despite covering only 3% of the global land area, peatlands store approximately one third of all soil carbon. Temperature is one of the major drivers in peatland carbon cycling as it affects both plant production and CO2 fluxes from soils. However, it is relatively unknown how boreal peatland plant photosynthesis is affected by higher temperatures. Therefore, we measured plant photosynthetic rates under two different warming treatments in a poor fen in Northern Michigan. Eighteen plots were established that were divided into three treatments: control, open-top chamber (OTC) warming and infrared …