Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Life Sciences

Viability Of Wetland Crops For Use In Treatment Wetlands: Nitrogen Removal From Water And Production Of Food, Andrew Denson Corder Dec 2019

Viability Of Wetland Crops For Use In Treatment Wetlands: Nitrogen Removal From Water And Production Of Food, Andrew Denson Corder

Theses and Dissertations

Treatment wetlands are used to treat wastewater from a variety of sources, but their functionality depends on the macrophytes present therein. To better understand the viability of wetland macrophytes both as sources of food and as agents of nitrogen removal from wastewater, this study quantified plant growth, food production, and nitrogen removal capacity of three common wetland crops as well as three locally dominant graminoid species in a variety of relevant ecological contexts. All six plant species and a control were grown over a ten-week period in three related experiments: (1) under three moisture regimes, (2) with or without competition …


Introduction To Sorghum Paper Production, Zachary Christman May 2019

Introduction To Sorghum Paper Production, Zachary Christman

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

Sorghum is a tall grass used for many commercial products such as fodder and syrup. The 10 to 15 feet stalk of the plant has lower lignin than wood and provides a fiber length of 2.31 mm in the outer covering and 1.38 mm for the leaf. Sorghum fiber makes a high quality, strong paper suitable for printing, packaging and paperboard.


Response Of Sorghum Enhanced In Monolignol Biosynthesis To Stalk Rot Pathogens, Deanna L. Funnell-Harris, Scott E. Sattler, Patrick M. O'Neill, Tammy Gries, Hannah M. Tetreault, Thomas E. Clemente Apr 2019

Response Of Sorghum Enhanced In Monolignol Biosynthesis To Stalk Rot Pathogens, Deanna L. Funnell-Harris, Scott E. Sattler, Patrick M. O'Neill, Tammy Gries, Hannah M. Tetreault, Thomas E. Clemente

Department of Plant Pathology: Faculty Publications

To increase phenylpropanoid constituents and energy content in the versatile C4 grass sorghum (Sorghum bicolor [L.] Moench), sorghum genes for protiens related to monolignol biosynthesis were overexpressed: SbMyb60 (transcriptional activator), SbPAL (phenylalanine ammonia ase), Bmr2 (4-coumarate: CoA ligase), and SbC3H (coumaroyl shikimate 3-hydroxylase). Overexpression lines were evaluted for responses to stalk pahtogens under greenhouse and field conditions. Greenhouse-grown plants were inoculated with Fusarium thapsinum (Fusarium stalk rot) and Macrophomia phaseolina (charocal rot), which cause yield-reducing diseases. F. thapsinum-inoculated overexpression plants had mean lesion lengths not significantly different than wild-type, except for significantly smaller lesions on two of three SbMyb60 and …


Global Responses Of Resistant And Susceptible Sorghum (Sorghum Bicolor) To Sugarcane Aphid (Melanaphis Sacchari), Hannah M. Tetreault, Sajjan Grover, Erin Scully, Tammy Gries, Nathan A. Palmer, Gautam Sarath, Joe Louis, Scott E. Sattler Feb 2019

Global Responses Of Resistant And Susceptible Sorghum (Sorghum Bicolor) To Sugarcane Aphid (Melanaphis Sacchari), Hannah M. Tetreault, Sajjan Grover, Erin Scully, Tammy Gries, Nathan A. Palmer, Gautam Sarath, Joe Louis, Scott E. Sattler

Department of Entomology: Faculty Publications

The sugarcane aphid (Melanaphis sacchari) has emerged as a significant pest for sorghum. The use of sugarcane aphid-resistant sorghum germplasm with integrated pest management strategies appears to be an excellent solution to this problem. In this study, a resistant line (RTx2783) and a susceptible line (A/BCK60) were used to characterize the differences in plant responses to the sugarcane aphid through a series of experiments, which examined global sorghum gene expression, aphid feeding behavior and inheritance of aphid resistance. The global transcriptomic responses to sugarcane aphids in resistant and susceptible plants were identified using RNA-seq and compared to the …


Metabolomics Of Sorghum Roots During Nitrogen Stress Reveals Compromised Metabolic Capacity For Salicylic Acid Biosynthesis, Amy M. Sheflin, Dawn Chiniquy, Chaohui Yuan, Emily Goren, Indrajit Kumar, Max Braud, Thomas Brutnell, Andrea L. Eveland, Susannah Tringe, Peng Liu, Stephen Kresovich, Ellen Marsh, Daniel P. Schachtman, Jessica E. Prenni Feb 2019

Metabolomics Of Sorghum Roots During Nitrogen Stress Reveals Compromised Metabolic Capacity For Salicylic Acid Biosynthesis, Amy M. Sheflin, Dawn Chiniquy, Chaohui Yuan, Emily Goren, Indrajit Kumar, Max Braud, Thomas Brutnell, Andrea L. Eveland, Susannah Tringe, Peng Liu, Stephen Kresovich, Ellen Marsh, Daniel P. Schachtman, Jessica E. Prenni

Nebraska Center for Biotechnology: Faculty and Staff Publications

Sorghum (Sorghum bicolor [L.] Moench) is the fifth most productive cereal crop worldwide with some hybrids having high biomass yield traits making it promising for sustainable, economical biofuel production. To maximize biofuel feedstock yields, a more complete understanding of metabolic responses to low nitrogen (N) will be useful for incorporation in crop improvement efforts. In this study, 10 diverse sorghum entries (including inbreds and hybrids) were field-grown under low and full N conditions and roots were sampled at two time points for metabolomics and 16S amplicon sequencing. Roots of plants grown under low N showed altered metabolic profiles at …


Southeast Kansas Crop Production Summary – 2018, G. F. Sassenrath, L. Mengarelli, J. Lingenfelser, X. Lin Jan 2019

Southeast Kansas Crop Production Summary – 2018, G. F. Sassenrath, L. Mengarelli, J. Lingenfelser, X. Lin

Kansas Agricultural Experiment Station Research Reports

This is a summary of the crop production conditions in southeast Kansas in 2018, and the results of the variety testing for corn, soybean, sorghum, sunflower, and wheat.


Determining Profitable Forage Rotations, J. Holman, A. Obour, A. Schlegel, T. Roberts, S. Maxwell Jan 2019

Determining Profitable Forage Rotations, J. Holman, A. Obour, A. Schlegel, T. Roberts, S. Maxwell

Kansas Agricultural Experiment Station Research Reports

Annual forages are an important crop in the High Plains, yet the region lacks recommended annual forage rotations compared to those developed for grain crops. Forages are important for the region’s livestock and dairy industries and are becoming increasingly important as irrigation capacity and grain prices decrease. Forages require less water than grain crops and may allow for increased cropping system intensity and op-opportunistic cropping. A study was initiated in 2012 at the Southwest Research-Extension Center near Garden City, KS, comparing several 1-, 3-, and 4-year forage rotations with no-tillage and minimum-tillage. Data presented are from 2013 through 2018. Tillage …


Engineering Linear, Branched-Chain Triterpene Metabolism In Monocots, Chase Kempinski, Zuodong Jiang, Garrett Zinck, Shirley J. Sato, Zhengxiang Ge, Thomas E. Clemente, Joseph Chappell Jan 2019

Engineering Linear, Branched-Chain Triterpene Metabolism In Monocots, Chase Kempinski, Zuodong Jiang, Garrett Zinck, Shirley J. Sato, Zhengxiang Ge, Thomas E. Clemente, Joseph Chappell

Department of Agronomy and Horticulture: Faculty Publications

Triterpenes are thirty-carbon compounds derived from the universal five-carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene …